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Introduction
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Effective Theory

10°m , Effective description
@ Focus on the relevant physics

@ Use the actual, relevant degrees of
freedom to describe what happens
at a given length or energy scale

Efficient description

@ Ignore boundary conditions at
larger scales

» we call that “power expansion”

@ Sum over irrelevant degrees of
freedom at smaller scales

» we call that “integrating out”
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Defining Feature of a Jet

This is a jet
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Defining Feature of a Jet

This is a jet This is not a jet

P > PL P~ PL

p| : total momentum along direction of flight
p.: intrinsic transverse momentum
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Jets of Hadrons.

QCD doesn’t let us observe quarks and gluons directly, only jets of hadrons
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These are 2 jets This are not 2 but 3 jets
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Jets of Hadrons

QCD doesn’t let us observe quarks and gluons directly, only jets of hadrons

TPJ_
pj

These are 2 jets This are not 2 but 3 jets

5.
3 ~

P >PL @

e~ q
g
et q

Jets can still tell us the QCD final state of the hard interaction process
=- 36 years ago: Discovery of the gluon
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Jets are Ubiquitous.

CATLAS

LEXPERIMENT

Run Number: 166198, Event Number: 100726931

Date: 2010-10-05 03:27:52 CEST
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Effective Theory for Jet Processes
e q e q . i
e ~Q M >W@: Hard interaction process
et q et q Q:EJ_|_|15*J| ~ p

@ For the total cross section, Q is the only relevant scale
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Effective Theory for Jet Processes
e q e q , )
e ~Q M >W@: Hard interaction process
! Q=E;+ |ps| ~ p)

Collinear emissions (perturbative)

m? = E3 — |p;|? ~ p?

@ By asking more detailed questions, like the number and size of jets, the
jets are resolved, which introduces sensitivity to additional scales
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Effective Theory for Jet Processes
e q e~ q . .
i ~Q >NW< >W@: Hard interaction process
l et q et q Q=EJ+IﬁJ| gp”
W Collinear emissions (perturbative)
Hy~mg @
l w m? = B — |p;> ~p?

m?2 Em \Q/"Zf{ Soft emissions (perturbative)

Hns ~—— X m2 = p2

? E /é —L = E; — |pJ| ~ —

l Q P
ua~Aqcp @ @ @ Hadronization (nonperturbative)

= Physical picture is well-known (e.g. the basis of all Monte Carlo generators)
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Effective Field Theory for Jets

Soft-collinear effective theory (SCET) is the systematic implementation of this
physical picture at the Lagrangian level as an effective field theory of QCD

o= H(Q)

wr All hard interactions are
integrated out

» Hard function H q

Y
X
A

e’ -
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Effective Field Theory for Jets

Soft-collinear effective theory (SCET) is the systematic implementation of this
physical picture at the Lagrangian level as an effective field theory of QCD

oc=H(Q) x (J; Jz)(mi)

wr All hard interactions are
l integrated out

» Hard function H Jet

wy Collinear emissions described
by collinear jet fields

» Jet functions J

Y
X
A

et e

Jet
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Effective Field Theory for Jets

Soft-collinear effective theory (SCET) is the systematic implementation of this
physical picture at the Lagrangian level as an effective field theory of QCD

o=H(Q) X (J; J2)(m?%) ® S(m?%/Q)

wr All hard interactions are
l integrated out

» Hard function H Jet
. o . Soft
wy Collinear emissions described
by collinear jet fields
i » Jet functions J J -

ns Soft emissions described
by soft Wilson lines

» Soft function S
Jet
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Effective Field Theory for Jets

Soft-collinear effective theory (SCET) is the systematic implementation of this
physical picture at the Lagrangian level as an effective field theory of QCD

o =H(Q) X (J1J2)(m]) & 5(m3/Q) & F

wr All hard interactions are
integrated out
l » Hard function H

. o . 4 Soft
wy Collinear emissions described

by collinear jet fields /
i » Jet functions J

Y

ns Soft emissions described
by soft Wilson lines
l » Soft function S

Jet
na Hadronization is encoded in

nonperturbative matrix elements
» Nonpert. soft function F'
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Resummation of Large Logarithms

o(Q, my) contains logarithms L = In Mmoo

HH 125
o=1
+ asL?+ asL + o +as(’)(%) NLO
+2L* 4+ 2L + %L+ 2L + o? +a20(%) NNLO
4+l 4+ L + 2L 4+ 3% + 3L + 3L 4+ a2+ .. N3LO
+ 4+ 4+ D+ 4+ o+ 44
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Resummation of Large Logarithms

o(Q, my) contains logarithms L = In % ~in B o

PH ny
oc=1
+ o L?+ asL + o + as(’)(%) NLO
+o’L* + 2L+ a?L? + %L + o2 +a§0(%) NNLO
+ L 4+l + 2L 4+ &3L% + 3L + 3L 4+ a2+ .. N3LO
+ 4+ 4+ D+ 4+ o+ 44
LL NLL  NLL” NNLL NNLL” N3LL
In the EFT limit m; < Q, logarithmic terms o) L™ —7T1—— MH
are the dominant perturbative corrections H
@ Are resummed to all orders by RGE running in SCET v
» Can obtain precise predictions by carrying out A s
resummation to higher orders S
» Different resummation scales provide systematic )
handles on perturbative uncertainties s

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories

DESY Physics Seminar 2015-02-24 7132



Resummation of Large Logarithms

o(Q, my) contains logarithms L = In % ~in B o

PH ny
oc=1
+ aL?+ asL + o + as(’)(%) NLO
+’L*+ 2L+ ’L? + %L + o2 +a§0(%) NNLO
+ L+l + L 4+ o302 + 3L + &3L 4+ a2+ .. N3LO
+ 54+ 4+ D+ 4+ o+ 44
LL NLL  NLL” NNLL NNLL” N3LL
In the EFT limit m; < Q, logarithmic terms o) L™ —7T1—— MH
are the dominant perturbative corrections H
@ Are resummed to all orders by RGE running in SCET v
» Can obtain precise predictions by carrying out A s
resummation to higher orders S
» Different resummation scales provide systematic )
handles on perturbative uncertainties s

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories

DESY Physics Seminar 2015-02-24 7132
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PH ny
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Thrust Spectrum

A Peak Tail
Resummation  Transition = Fixed Order

> 3 jets

y

Thrust event shape 7 determines “2-jettiness” 75 of an event
= 7n3:Q><7§:Q2><T (r="72/Q)
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Fit at N3LL' for a,(mz) & @,

0.3

theory scan error

as(mz)=0.1135-40.001]

0.2 i
[Abbate et al.] ]
@® DELPHI 4
® ALEPH
0.1F ® OPAI
® SLD
0.0 ‘

010 015 020 025 030 1
Thrust event shape 7 determines “2-jettiness” 75 of an event
= 7n3:QX7§=Q2><T (r="72/Q)

@ Has been resummed in SCET to N3LL’4+N3LO

» Global fit to et e~ data yields precision determination of a5 (mz)
together with nonperturbative hadronization parameter €21

= Want to make use of the same high precision in Monte Carlo generators
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GENEVA Monte Carlo Framework
GENEVA combines 3 ingredients
@ Higher-order resummation (NNLL’)

» Use SCET framework for resummation
(Requires nontrivial extension to multi-differential cross sections)

@ Fully differential fixed-order calculations
» Developed a systematic framework to go to NNLO

@ Parton showering and hadronization to “fill out” jets

» Can be provided by standard SMCs Pythia8, Herwig++
(with some modifications)

= Result will be a fully exclusive NNLO+NNLL’4+PS MC generator
(including systematic theory uncertainties)

> Proof-of-concept implementation exists for et e~
> pp — Z+jets version is mostly complete and being validated
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GENEVA in a Nut Shell

@ Divide phase space into jet
multiplicities using jet resolution
variable 7Ty (e.g. N-jettiness)

:

dU' cut e
© Compute resummed T cross dT>2(T ) 3 (T)
sections at NNLL,+NNLO,

NLL,+NLOs, ...

© Let Pythia8 shower fill out jets
with radiation

@ Pythia8 hadronization
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Results T

12 R AR LAY LR REAR RN RSN RARRN AR 1.4\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
LEP (91.2GeV) 3 1o LEP (91.2GeV)
_ 10 B NNLL'+NLO;  _— B NNLL/+NLO3
E EEENLL'4LO; | E 1 EEE NLL'+LO,
~ B O T EREGEEN- 1 .
i é iO.B
S 306
= EIRS
g 3 504
< 1 ©
= 0.2 iy .
Peak region 2 Transition region
N R N T A T A NN FEREE ENE SRR NN AR RN NNRRE RREEN N R
8 9 10 %0 1112 13 14 15 16 17 18 19 20
T; [GeV] T2 [GeV]
do
o = H@Q x (J)(@QT2) ® 5(7T2)
2

@ Higher-order resummation significantly improves precision
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Results for 75

12 VAL AR R RARRY RRARA AR AARRA ARRAR RRAA= 1.4 g T T T T T T T
LEP (91.2GeV) 1.2 LEP (91.2GeV)  GENEVA NNLL,+NLO3
10 GENEVA NNLL,+NLO; = : —— Partonic
8 — Partonic 3 S NNLL/+NLO,
B NNLL/+NLO; = L
_____ El L~ NLOs

do/dT; [nb/GeV]
o

2 0.2 L e
Peak region S L ‘Tran‘snm‘n re‘g|on‘
00 H]‘-\H\2‘\\\\3‘\H\iuuf‘)uuéuu’r‘\u\8‘\\\\5\\\{0 qOH“11”“12‘“‘13‘”‘14““15‘”‘16‘”‘17‘”:‘[8‘”1‘[9‘”‘20
Tz [GeV] T [GeV]
do
7 = H@Q) x (J)(@QT) @ S(T2)
2

@ Higher-order resummation significantly improves precision

@ GENEVA is constructed to exactly reproduce the analytic NNLL’4+NLO3
result of its resolution variable (here 7T3) including pert. uncertainties
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Results for 75

12;\H‘wHw\HH\\H\\HH\\H\\HH\HH\HH\HHE 1.4 g T T T T T T T
E { ALEPH (91.2GeV) J 1.2 GENEVA+PYTHIAS 3
_1op 1 OPAL (91.2GeV) = : == Default El
E sE d - GENEVA+PYTHIA8 3 8 1 =7~ Tune 3 é
= g :-' L E== Default E ~ 0.8 —— u(mz)=0.118 E
i 657 - h ---- Tune 3 E i : No hadr. E
= E i .-._ — — ay(mz)=0.118 E 2 0.6 E
T 4F - —— No hadr. 4 = E
v O ] 504 E
Ry oy ER 0.oC § ALEPH (91.2GeV) |
i E . . . =
5 Peak region . I opAL (91.2Gev) Transition region 3
F = = R T i S FUE BT N R = B b b b b b b L Lo 3
0 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15
T; [GeV] T2 [GeV]
do

an - HQ) x (JJ)(QT2) ® 5(T2) ® F

@ Higher-order resummation significantly improves precision
@ GENEVA is constructed to exactly reproduce the analytic NNLL’4+NLO3
result of its resolution variable (here 7T3) including pert. uncertainties
@ Pythia8 hadronization effect behaves as expected from field theory
» Excellent agreement with data using a.s (mz) from N3LL’ thrust fits
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Results for Other 2-Jet Observables

C parameter Heavy-jet mass p
120 prrrrrr T

B LEP (91.2GeV)
GENEVA NNLL/+NLO;3

M
LEP (91.2GeV) GENEVA NNLL/+NLO3
—— Showered (PYTHIAS

+ Partonic

=]
o
TTTTTTT

®
[=}

50 8 -—- :

izm NNLL;+NLO; s
NLL..4LO

9 410, : "

-g ,.h.M.H.h.:;:L‘ o

! [ NNLL,+NLO;
Transition region E=3 NLL/+LO;

s b s b b b o b b o b
05035 04 045 05 055 0.6 -1 012 014 016  0.18 0.2
C P

[
(=}

Transition region

@ After showering, high precision of built-in 72 resummation also improves
other 2-jet event shape observables

> close to the respective exact NNLL{ and NNLL/, results
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Results for Other 2-Jet Observables

C parameter Heavy-jet mass p
70 R LR RN AR LSRR R AAARRR) RARRRARARS 120 AR AR AR A AR AR AR RRRRRRRRRE
60 GENEVA+PYTHIA8 7: GENEVA+PYTHIAS E
== Default ] 100 == Default 3
50 ---- Tune 3 E ---- Tune 3 E
= F —— a,(mz)=0.118 7 g 80 —— a,(mz)=0.118 3
£40 ;7 No hadr. 7; :‘ No hadr. g
o & | g0 E
Ts0 ER E
E i < 40 E
ook E
10 E } ALEPH (91.2GeV) ] 205 ¢ ALEPH (91.2GeV) e
£ Transition region 1 OPAL (91.2Gev) 1 i OPITL (91~2G‘eV) Tr?nsition ‘regiong
03" 035 0a 045 05 085 0.6 S K P R (R S (ST N E -2

c p

@ After showering, high precision of built-in 72 resummation also improves
other 2-jet event shape observables

> close to the respective exact NNLL{ and NNLL/, results

@ Data is well described using the same a; and hadronization tune

» Confirms that et e~ data implies low o value

> Low o, was also confirmed recently by explicit N3LL’ fits to C parameter
[Hoang, Kolodrubetz, Mateu, Stewart]
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Results for Other 2-Jet Observables

C parameter Heavy-jet mass p
250;\umu‘\muu\‘mmu\‘muuu‘uuum‘mmu 1200 g
E GENEVA+PYTHIAS E } ALEPH (91.2GeV) J
200 g— ! TDEEZ“; 1000 ] OPAL (91.2GeV) é
= E —— ay(mz)=0.1183 = gog F GENEVA+PYTHIAS 3
E150F —— No hadr. = E == Default E
0 E Q ; ---- Tune 3 é
) E 3 600 z —— a,(mz)=0.118 3
g0 < 400 e S Nohadr.
50 § ALEPH (91.2GeV) 2008 | _ 5
E Peak [ OPAL (91.2GeV) E I‘Deak region ‘ 4
=i 0’ prrrr bbb b1
0.1 0.15 0.2 0.25 0.3 0 0.02 0.04 0.06 0.08 0.1
C P

@ After showering, high precision of built-in 72 resummation also improves
other 2-jet event shape observables

> close to the respective exact NNLL{ and NNLL/, results

@ Data is well described using the same a; and hadronization tune

» Confirms that et e~ data implies low o value

> Low o, was also confirmed recently by explicit N3LL’ fits to C parameter
[Hoang, Kolodrubetz, Mateu, Stewart]
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Higgs With and Without Jets
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Hadronic Collisions.

CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000

H — ~~ candidate in CMS

Essential new piece in proton collisions is
initial-state radiation (ISR)

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories. DESY Physics Seminar 2015-02-24 13/32



Physical Picture with ISR

MEH L Seoo 0 Q) -t
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Physical Picture with ISR

v

Jet Jet

Vv

Initial-state analog of jet functions are
beam functions [Stewart, FT, Waalewijn 09]

@ Correspond to a more differential
parton distribution

@ Have been computed to NNLO for

several observables
[Luebbert, Gehrmann, Yang; Gaunt, Stahlhofen, FT]

> e.g. necessary for pp GENEVA
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Physical Picture with ISR

Initial-state analog of jet functions are
beam functions [Stewart, FT, Waalewijn 09]

@ Correspond to a more differential
parton distribution

@ Have been computed to NNLO for

- several observables
[Luebbert, Gehrmann, Yang; Gaunt, Stahlhofen, FT]

> e.g. necessary for pp GENEVA

m og)

(4 Hadronization)
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Higgs Production

~ 2/3 of Higgs bosons are produced mostly at rest (i.e. low pr)

~ 1/3 of Higgs bosons have sizeable pr

0 jets 1 jet 2jets
q 174 g ; q > > q
----- H -----H
R 1%
q “\H g q > > q

@ Number of jets in the final state distinguishes different processes

» Essential for measuring Higgs couplings
» Also important to separate different backgrounds, e.g. in H - WW
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A

L Peak
Resummation

Talil

Transition  Fixed Order

cut

oo(p5™) | 1 o>1(p7

°* spectrum of lead
@ Basic idea analo

C ut

Pr

ing jet determines “O-jettiness” of an event
gous to thrust, but also some important differences:

» Constraints pr rather than virtuality of emissions
» Based on jets of radius R (local clustering of emissions) rather than global

sum of emiss

@ Resummation is

ions (e.g. O-jettiness/beam-thrust event shape)

known up to NNLL’4+-NNLO

[Banfi, Monni, Salam, Zanderighi; Becher, Neubert, Rothen; FT, Walsh, Zuberi]
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Resummation for pic

0-jet cross section in
(valid for R?> <1 and p

oo (p;ut

)=Hgg(mu) X [By(mp, p7", R)]*

SCET for pit* < pgut

%ut << mH)

cut

X Sgq(p7"s R)

RGE running now happens in 2 dimensions: virtuality p« and rapidity v

KA H
99 cut
~ -+ m
lpa|~mp A on2PT_ _ o 2™MH
i my 1
yva RGE cut
: 174
+ 41In Pr_ In —
~u plut S V B u mH
Ks pglt L .gg< ................... IS .g pcut 7 pcut
KB~ Pr v RGE 4+2In L In ==L
: cut : > K I/2
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Results for Higgs + 0-jet Bin

0 jets: oo (pSHt >1 jets: o1 (P

257\\\\\\\\\‘\\H\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\HH‘HH\HH‘HH\HH HHHHL T
F 99 — H (8TeV) ] g9 — H (8TeV) ]
20;mH2125.4GeV B mpyg=125.4 GeV I
[ R=04,m EFT R = 0.4, m; EFT B
£15i _____________ 3 STWZ, pug = —imur ]
= E B NNLL/, +NNLO -
f’;&. F ] ]
‘510; STWZ, i =—imu B
F B NNLL/, +NNLO - ]
5 EEENLL, +NLO —
c 4 e NLL,, ] ]

07 \\\\‘\\H\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\H\\‘\\\\\HH‘HHHH\‘HHHHT

0 10 20 30 40 50 60 70 80

Pt [GeV] Pt [GeV]

[Stewart, FT, Walsh, Zuberi]

@ Resummation yields much improved precision: small uncertainties and
good convergence
» Most precise predictions to date

» Jet clustering uncertainties are not included but appear to be under control
[Alioli, Walsh; Dasgupta et al.]

» PDF+as uncertainties are not shown (become relevant now)
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Comparison with Higgs Differential Measurements

do /dpl*

\\H\HH‘\\HHH\‘H\HH\\‘HH\HH‘\\HHH\‘\HHHH‘H\HHH
1 mpy=125.4GeV + ATLAS H — v~
— B 99 H (NNLL/+NNLO) +XH ]
> . ]
) BEE 99 H (NLL/+NLO) +XH
|2 I e XH=VBF+VH+ttH il
S
é‘ L
55 0.1
i) E
v-c .
B NNLL, ? C
= s e R T
E U T e - N
P [GeV] 0.01 e b Do b R ETRATTONAT
0 20 40 60 80 100 120 140

Py [GeV]

Can compare directly to pj;?t spectrum measured by ATLAS in H — ~~
[ATLAS, JHEP 09 (2014) 112]

@ Multiply by BR(H —~~)

@ Include photon acceptance (essentially pis* independent)

@ Also add 5% branching ratio and and 8% PDF+a; uncertainties
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Inclusive Cross Section

EEE NLL, +NLO
[ NLL,,
Ll

NNLL, +NNLO ]

il L L L L L
Ol] 10 20 30 40 50 60 7O 80 9
P [Gev)

2
t t 2 .
H H m My —
Hg‘"’(mH):‘:b """ D R
H

]
0 100

10

Ttotal (1 3 TeV)

~N3LO [dFMMV] ‘{7

“

(NNLO PDFs)
NLO

H=mg  p=myf2
(strict fixed order)

(NLO PDFs)
8¢ — H (13 TeV), my = 125 GeV, m; EFT

#

-
o

(LO PDFs)

M= —imy
(7* improved)

HH — —1mgyg

T
99— H (13 TeV)
E my=125 GEV.
R = 0.4, m{ BET

STWZ, = —imy
[ NNLL), +NNLO
E =S NLL, +NLO

[ NLL,

10 20 30 40 50 60 70 80 90 100
P [GeV]

i0

Imaginary scale pg = —img resums large In?(—1) = —72 terms in Hy,
(72 resummation [Parisi, Sterman, Magnea; Ahrens et al.])

@ Improvement in O-jet region carries over to total inclusive cross section

@ w2-improved NNLO cross section consistent with approximate N3LO estimates
[e.g. de Florian, Mazzitelli, Moch, Vogt]
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Resummation for Higgs + 1-jet Bin

[Boughezal, Liu, Petriello, FT, Walsh]

1-jet bin adds another scale dimension:

pjet2
T
M
S
oL
'g& jet2 .
N r  resummation at NLL’4+NLO
Jro\obz >2-jet / [Liu, Petriello]
ot & (Pt > pST treated in fixed order)
pT B
1ijet P! resummation at NNLL’+NNLO
O-jet 5 (for pls*t < poff with pi*? treated at
— : ‘ fixed order)
Pr p%ﬂ pj;tl

@ Important consistency check: results must be insensitive to pg'
@ Provides first combination of resummed 0-jet and 1-jet bins
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Cross Section in Jet Bins

I I I I
—4— ATLAS H —~y

50

‘ B g9H(STWZ, BLPTW) +XH
40

...... XH=VBF+VH+ttH {
. POt=30GeV
£ 30k My =125.4GeV
N :
20 — -
10 =
ob b [ breoecceee: e 1

>0 =0 >1 =1 >2

]Vjets

Putting everything together we can compare with measured cross sections as
a function of the number of jets

@ Same corrections applied as for pi_ﬁt spectrum

e VBF +V H + ttH contributions as given by ATLAS measurement
(come from Monte Carlo normalized to available (N)NLO results)
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New Rapidity-Dependent Jet Binning

S
[Gangal, Stahlhofen, FT] L o iy ittt el
) . o 0.8 ' -
Generalize p’* by defining E e
306 bompr

Tfj = P1j f(yJ) %0_4; é

T = max Ty; 02 E

f jea(ry 19 i . ]

o Lo Lo b b L I

@ Can choose different rapidity -4 =3 -2 -1 0 1 2 3 4

. Yj
weighting functions such that 77°* SR
» can be resummed

> is insensitive to forward rapidities

@ Count jets according to T;
Ojets:  oo(TFH<TM)
> 1 jets: 021(7']2‘9t > T

Te; <15 GeV

prj [GeV]
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Resummation for 7}iet

0-jet cross section in SCET for T,J;E L Temt
(valid for R* <1 and T°"* < m )

oo(T°") = Hgg(mm) X [By(mu T, R)]?
% S;B;C(Tcut’ R)

RGE running is now thrust-like and only involves virtuality

Hggl ZHNmH lnzz;l: = 21n2%
B;Am A e m g Teut
AA pp~VmuTe n?

S‘ﬁ”c + 21n? T
f2 — ps~ T K
= Complementary to pis* also from

KA theory perspective
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First Results for 77 and 72

ao(Th" <T)

5 e e e LA A e . .
Fogoe arevy @ NNLL'+NNLO is work in progress
20" g » Expect significant reduction in theory
2.l S & uncertainties (to similar level as pls*)
Ewof E
§ I EEE NLL4+NLO
scE = NLL 7
i e
)2 S N A A A A A AR
10 20 30 40 50 60 70 80
T [GeV]
jet
oo (TE" <TeUt)
i e i e
r 99— H (8TeV)
20}mH=125G
? BEEE NLL+NLO E
st ey = NLL 3
i T
ol b b b b b L d
00 10 20 30 40 50 60 70 80

Tt [GeV]
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First Results for 77 and 72

ao(Th" <T)

B i ateny T @ NNLL’4NNLO is work in progress
20" g » Expect significant reduction in theory
R e . uncertainties (to similar level as pls*)
£ 10b . jet ,
2 o @ Compare to 7 spectrum measured in
5H . L E H—~y .
O:\\\‘\\\‘\\\‘\\\‘\\‘T??‘“\f‘\r‘cm\\\‘\\\z do-/dTé'et
0 10 20 30 40 50 60 70 80 10:\HHHH‘\HH\H\‘HHHH\‘HH\HH‘\HHHH‘HH
.TE“L [GeV] E my =125.4GeV +ATLAS H—yy
O-O(T(-]:,Et <TCUt) = B o9 H(NLL/4NLO) +XH
25 [ e L XH=VBF+VH+tiH
F 99— H (8TeV) Q 1 ?
20}mH=125G é F
= F ko [
&15; -------------------------------- = i'“l) """"
Y i ] 50.1; .........
[SRT]= 1 b E e
s F EEE NLL'+NLO © C
Y / £ ] NLL ; =
£ 72;“<7'°“" ] . H\\\\\\\‘\\\HHH‘\HHHH‘\HHHH‘HHHH\‘HH
7 AT 001 0 20 a0 a0 80
0 10 20 30 40 50 60 70 80

T [GeV] TE [GeV]
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Jet Mass and Soft Effects
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Jet Mass Spectrum

[Stewart, FT, Waalewijn]

Use 1-jet bin to look in detail at the jet itself
@ Consider 3 hard processes «:

qg — Zq, qq — Zg, gg — Hg

@ Require signal jet with p7- > 200 GeV
@ Veto additional jets with p7- > 50 GeV

Jet mass spectrum in SCET
(for my < p#-, without MPI)

do,.

dmz = n(pgﬂ yJ) XBZ(VetO)X J ,g(mi) ® Sh(mg/(zp%))
J

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories DESY Physics Seminar 2015-02-24 26/32



Jet Mass Spectrum

[Stewart, FT, Waalewijn]

Use 1-jet bin to look in detail at the jet itself
@ Consider 3 hard processes «:

qg — Zq, qq — Zg, gg — Hg

@ Require signal jet with p7- > 200 GeV
@ Veto additional jets with p7- > 50 GeV

Jet mass spectrum in SCET including hadronization
(for my < p#-, without MPI)

do,.

e = Ho(pf,ys) X B (veto) X Jo.4(m3) ® 5,.(m3 /(2p7)) @ Fx
J
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Jet Mass Spectrum

[Stewart, FT, Waalewijn]

Use 1-jet bin to look in detail at the jet itself
@ Consider 3 hard processes «:

qg — Zq, qq — Zg, gg — Hg

@ Require signal jet with p7- > 200 GeV
@ Veto additional jets with p7- > 50 GeV

Jet mass spectrum in SCET including hadronization
(for my < p#-, without MPI)

1 do.

- dm?, = HH(p%, Yyy) XBz(veto) X Jq,g(mi) X Sh(mg/(2p%)) R F,.

@ Dependence on hard kinematics and jet-veto effect essentially drops out
for normalized jet mass spectrum

= Can study and predict properties of soft and nonperturbative effects

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories DESY Physics Seminar 2015-02-24 26/32



Jet Mass Spectrum in Pythia8

q9 — Zq: quark jet qq@ — Zg: gluon jet

0.025——————— T 0.025 1+
[ 300 < p7 < 400 GeV PYTHIAS AU2 1 [ 300 < pf <400 GeV PYTHIAS AU2 ]
7: 0.020- bl <2.R=1 g8~ Zq(1TeV) 7: 0.020[- bl <2 R=1,. q7 - Zg (1TeV)
3 F Sy e partonic 18 F A e partonic ]
= 0.015~ ,‘I N - - - hadronic+MPH] = 0.015~ AN - — - hadronic+MPL]
£ F R -~ partonic +Q ] 5§ F e \\ —-~ partonic + Q ]
E 0.010F I RN 4 ¥ 0010 / \ E
= [ / AN 1 = L / \ ]
B r / W 1 % r / AN ]
= 0005 ! RN 4 = 0005 / N .
F TN ] Eodo ERE N ]
0.000L PR BRI M e e S S| 0.000LC el P L T e

0 100 150 200 0 50 100 150 200

my [GeV] my [GeV]

Predict hadronization to behave qualitatively as for thrust in ete—
@ m?/pJ > Aqco: jet mass shifted by 1st moment Q. = [dk k F,, (k)

m3 = (mﬁ)pert + 2p‘1{ Q..
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Jet Mass Spectrum in Pythia8

q9 — Zq: quark jet qq@ — Zg: gluon jet

0.025 T 0.025 T
[ 300 < pr <400 GeV PYTHIAS AU2 | [ 300 < py <400 GeV PYTHIA8 AU2
T 0020 l<2R=1 qg > 2q(1TeV) - 7 0020 W<2R=1. 47— Zg (1 TeV)
g F N e partonic ] E F DA e partonic ]
= 0.015~ - - - hadronic+MPH] = 0.015~ / - — - hadronic+MPL]
£ F " —-— partonic+ Q ] 5 F —-— partonic + Q
S~ r T ~ r . T
_g 0.010; \A\ _— pa_rtonic ®F *: _g 0.010; \ _— partonic ®F 7:
B r N 1 % r ]
= 0.005 N E § 0.005F ]
0.000 E Ll I v T . 0.000: Ll Ll \\ ]

0 50 100 150 200 0 50 100 150 200

my [GeV] my [GeV]

Predict hadronization to behave qualitatively as for thrust in ete—
@ m?/pJ > Aqco: jet mass shifted by 1st moment Q. = [dk k F,, (k)
m3 = (m3)P°" 4 2py Q,
@ m?/pJ ~ Aqcn: partonic spectrum gets convolved with some F,

= Remarkably well satisfied by Pythia’s hadronization and also MPI
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First Jet Mass Moment

Consider the 1st moment of the normalized jet mass spectrum, which tracks
the shift in the spectrum

1 s o do
M, = ;/demJ dm%
@ We can predict the following behaviour
M,y " _ - R R3
it~ (P ys) R* ™ + (P ys) R + Q00 4+~ -+ + R
dominant pert. pert. soft ISR hadronization MPI

@ Dependence on jet radius R, partonic channel x, and p‘q’,, ys allows one
to separate physically distinct sources of soft effects

» Soft ISR interference (part of primary hard collision)
» Nonperturbative effects (hadronization)
» Soft multi-parton interactions (underlying event)

= Should try to measure M, (R), even without measurements we can
compare MC models with predictions from field theory
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40pr T 4O e T
3.5 PYTHIAS AU (part - had) 5 35 HERWIGH+ (part > had) ... g8 Hg =

% 30iEcm=7TeV,\y,|<2 *,_o" E % 30;Ecm—7TeV,\y,|<2 — g7 Zg 13
0F . = OF , 1

O 25;3OO<pT<4OOGeV ey 19 255300<pT<4oocev -—-qg7Zq 1
E - E E

5 “E - .o-ooow""‘." E a “E »§E
g 20¢ S XS it
= 15E st 3 = 150 %éj
s E il 158 E
10 Tttt 88 = Hg 7 Z 10 E
g —qg-Z8 - g E

0.5 0.5 =

E ‘ ‘---qgﬁzq‘f E ‘ ‘ E

0. Y B Y Y B Y Y B 0. Y B Y Y N Y Y B |
%.0 0.5 1.0 1.5 %.O 0.5 1.0 1.5

R R

Q. (R) is defined by nonpert. matrix element which we can expand in R

R
Q.(R) = Q(l) _|_ 9(3) _|_ 9(5) + .

q9.9
o Leading ©2{!) is universal for quark and gluon initiated jets
» Could be measured in 1-jettiness (thrust) in DIS

= Pythia8 and Herwig++ agree with predictions (very well for Pythia8)
» Have very different channel dependence compared to each other
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Primary Soft ISR

- . C
q9 — Zq: Ch—TA +3/2 qq — 2g9: C,=Cp—==-1/6
e T . - — ] —
14 4 E
s~ Zq ] B 1
_ 12F B =7TeV, ly) <02 1 Ry, - 3
% 10 300 < pF <350 Gev | E 10; LT é
o N el Cqgg—Z =
-ﬁ« s ] 3‘* 8: Z‘q —7’fV 0.2 ]
L JEEEEmmEE s 4 K g Bm=T7Te > Iyl <. 1
g TEEESsREE T 1 € E 300<pp<350Gev ]
S 40 . PYTHIAS AU2 N S 45 . PYTHIAS AU2 E= NNLL ]
»F + PYTHIAS4C - NLL »F + PYTHIAS4C o NLL 4
[ * HERWIG++ ‘ ‘ d £ HERWIG++ \ ! ]
%5 0. 75 1. 125 15 %5 0.75 1. 1.25 15
R pert R
I 1
Pert. contributions scale as 27" py. R*™7 + p a,C,, R*
A

@ R* contribution due to soft ISR interference (between beam Wilson lines)
> Enters at O(as) and NNLL, color factor depends on partonic channel

@ In MCs soft ISR is modelled as part of parton showering
» Good agreement for gg — Zq (not as good for gg — Hg)
» MCs do not reproduce negative interference effect for q¢g — Zg
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Distinguishing Primary Soft ISR and MPI

6—r— R —
MPI also behaves as R* : PYTHIABAL‘JZ(part—> MPl)
o Like soft ISR, MPI populates jet with < | ggjz“gg X b
constant background of soft particles 8 "[ag->zq - o]
. ) 3 b 300< pi < 350GeV, lysl < 02 .
@ Mostly independent of partonic T, R
channel and py. (also as one expects) = | .
r b4
4
%omaadﬁs'.?‘l‘o 15
Both MPI and soft ISR behave as soft S R
underlying event Fagnzg e SOISR (+RY) o]
o Different MCs/tunes trade more/less & /»= /™= i g
soft ISR for less/more MPI Sap TR LT E
e . G o e :
@ Can be distinguished by different p. <2 part - part+MPL]
and channel dependence 3 15 : .—
L —— PYTHIAS AU2 i E
= Should measure M; (R) for different L PYTHIAs4c  — HERWIGH: 7
pi. and partonic channels 90 250 300 350 400 450 500
J
pr [GeV]

Frank Tackmann (DESY) Understanding Jets with Effective Field Theories DESY Physics Seminar 2015-02-24 31/32



Summary

Hadronic jets are our messengers of the hard QCD interaction

@ Jet processes typically involve multiple physical scales * s

1 Jet

= In such cases, effective field theories are powerful
tools to obtain precise theory predictions

= With many scales there are also many aspects
that are important and have to fit together BN R
» Higher fixed orders N
» Resummation of large logarithmic corrections
» Soft and nonperturbative effects
» Reliable uncertainty estimates

do /dpr

Other situations with multiple scales | did not talk about  ,F 7 .o 3
@ Heavy quarks K: sz i
@ Hierarchies between jets and in multidifferential é

cross sections
@ Jet substructure and heavy boosted objects
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