Shining Light into and out of the Hidden Sector

J. Jaeckel ITP Heidelberg

S. Abel, M. Cicoli, B. Doebrich, R. Engel, D. Horns,
M. Goodsell, H. Gies, V. Khoze, A. Lindner, A. Lobanov,
J. Redondo, A. Ringwald, C.Wallace

Shining Light into and out of the Hidden Sector

collapsed bran

J. Jaeckel

S. Abel, M. Cicoli, B. Doebrich, R. Engel, D. Horns, M. Goodsell, H. Gies, V. Khoze, A. Lindner, A. Lobanov, J. Redondo, A. Ringwald, C.Wallace We need... Physics beyond the Standard Model

Inventory of the Universe

Where does it hide?

Where does it hide?

Exploring is (at least) 2 dimensional

Exploring is (at least) 2 dimensional Energy, Mass LHC known knowns LHCb guessed **B** – unknowns phys V, Fixed target D M L A S E R The hidden sector unknown unknowns + Very small Monsters + Precision, Intensity, Small coupling

Exploring is (at least) 2 dimensional Energy, Mass LHC known knowns LHCb guessed **B** – unknowns phys V.Fixed target D M L A S E "dark" unknown R unknowns + + weakly coupled Precision, Intensity, Small coupling

A "visible" Hint for new Physics

The strong CP Problem

A dirty little secret...

$$S = \int d^4x \left[-\frac{1}{4} G^{\mu\nu} G_{\mu\nu} - \frac{\theta}{4} G^{\mu\nu} \tilde{G}_{\mu\nu} + \imath \bar{\psi} D_{\mu} \gamma^{\mu} \psi + \bar{\psi} M \psi \right]$$

" $\sim \theta \vec{E} \cdot \vec{B}$ "

- The θ -term violates time reversal (T=CP)!
- Connected to strong interactions!
 - Electric dipole moment of the neutron!

→ θ~0!!!

• Make θ dynamical \rightarrow it can change its value

• Make θ dynamical \rightarrow it can change its value

• Make θ dynamical \rightarrow it can change its value

→ QCD likes to be CP conserving (if we allow it)

• Make θ dynamical \rightarrow it can change its value

Phenoslides

Axion couples to two photons

small
$$\longrightarrow g \sim \frac{\alpha}{2\pi f_a}$$
 / large

Look for very weak interactions!

Axions and ALPs=Axion-like Particles

"Proper" Top-down Theory ;-)

Scale High Small Coupling

Example: Axion coupling

Effective higher dimensional coupling

 $\mathcal{L}_{Int} = -\frac{1}{4}gaF^{\mu\nu}\tilde{F}_{\mu\nu} = -ga\mathbf{E}\cdot\mathbf{B}$

• Small coupling for large axion scale:

Huge Scale >> LHC Energy!

High Scale Small Mass

Example: Axion See-Saw

The axion mass is small, too!

Example: Axion See-Saw

The axion mass is small, too!

Small
$$~~ m_a \sim \frac{m_\pi f_\pi}{f_a}$$
 Large

Pseudo-Goldstone Boson!

Example: Axion See-Saw

• The axion mass is small, too!

Large Scale but light!

ALPs from String Theory String theory: Moduli and Axions

String theory needs Extra Dimensions

Must compactify

 Shape and size deformations correspond to fields: Moduli (WISPs) and Axions Connected to the fundamental scale, here string scale

WISP candidates

Axion (like particles): Where are we?

Axion (like particles): Where are we?

Axion (like particles): Where are we?

Hidden Photons

String theory likes extra gauge groups

Hidden by distance

Hidden Photons, all over the place

Experimental Tests

Exploring fundamental high energy physics...
The direct approach: MORE POWER
LHC, Tevatron + ILC, CLIC

- Detects most things within energy range
- E.g. may find SUSY particles, WIMPs etc.

But...

- May miss very weakly interacting matter (Axions, Hidden Photons, WIMPs, WISPs...)
- Current maximal energy few TeV

But...

- May miss very weakly interacting matter
 Hidden photons, Axions, ALPs, WIMPs, WISPs...
- Current maximal energy few TeV

• Man its DANGEROUS...

But...

- May miss very weakly interacting matter: Hidden photons, Axions, ALPs, WIMPs, WISPs...
- Current maximal energy few TeV

• Or much much more horrifying:

NO SIGNAL ABOVE BACKGROUNDI

Complementary approaches

Light shining through walls

Light shining through walls

\cdot Test $P_{\gamma ightarrow X ightarrow \gamma} \lesssim 10^{-20}$

- Enormous precision!
- Study extremely weak couplings!

Photons coming through the wall!

- It could be Axion(-like particle)s!
- Coupling to two photons:

$$\frac{1}{M}a\tilde{F}F\sim\frac{1}{M}a\vec{\mathbf{E}}\cdot\vec{\mathbf{B}}$$

Light Shining Through Walls

- A lot of activity
 - ALPS -
 - BMV
 - Gamme V 25 cm
 - LIPPS
 - OSQAR

				Calibration diode	Temporary dark room
	Laser Box		Tevatron magnet (6m)	Plunger	PMT Box
111111153	Monitor sensor	Warm bore		(2m) "wall"	PMT

Small coupling, small mass

Weaker interaction

mass/energy

A cosmic hint for ALPs

High energy cosmic rays get absorbed

[Manuel Meyer 12]

Cosmic Light-shining-through-walls

[Manuel Meyer 12]

An interesting area...

The future ALPS-II @ DESY

Going deeper

Helioscopes

CAST@CERN SUMICO@Tokyo

SHIPS@Hamburg

"Light shining through a wall" $\gamma \rightarrow \gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$ Sun $\gamma \rightarrow \gamma$ $\gamma \rightarrow \gamma$

Sensitivity

Going to the future: IAXO

An interesting area...

Works not only for ALPs

WISPS=Weakly interacting sub-eV particles

 Massive hidden photons (without B-field)
 =analog v-oscillations

 γ'

 Hidden photon + minicharged particle (MCP)

Dark Matter(s)

Properties of Dark Matter

Dark matter is dark, i.e.
 it doesn't radiate!
 (and also doesn't absorb)

very, very weak interactions with light and with ordinary matter

> Exactly the properties of axions(-like particles)

The axion has no clue where to start

The axion has no clue where to start

Axion(-like particle) Dark Matter

Detecting ALP/WISP Dark Matter

Use a plentiful source of axions

Photon Regeneration

 \leq

axion (dark matter)

Signal: Radiofrequency peak (see talk by Leslie Rosenberg next week)

An extremely sensitive probe!!!

An extremely sensitive probe!!!

Encircling the axion...

@ DESY + Bonn: WISPDMX

IAXO as facility
IAXO facility IAXO provides large magnetized volume → useful for ALP DM search

Broadband Search Strategy

Dark Matter Antenna

Antenna converts axion->photon

Light concentrated in center

Detector

Probes here; very sensitive!! A Dream for Astrology ehhm Astronomy

Emission from moving dark matter

A picture of the DM-velocity distribution

The FUNK experiment Recycle Auger mirror

First measurements in the next few months

Could detect hidden photon DM!!!

We are cleaning the world of dark matter...

Fuer besseres Raumklima und mehr positives Licht

Pre-final remark

Looking for heavier ~GeV ALPs

Experiment at the SPS to search for Hidden Particles

Conclusions

Conclusions

- Good Physics Case for Axions and WISPs
 explore `The Low Energy Frontier'
- Low energy experiments test energy scales much higher than accelerators
 - Complementary!
- Exciting experiments in the next few years!!! Any Light Particle Search
- Any Light Particle Search
- Dark Matter may be ALPy/WISPy ③

Hidden sector

Status of IAXO

- Conceptual Design Report
- Letter of intent well received

- Gathering support for technical design report
- Support for prototype magnet and detector likely
- Collaboration growing
- Memorandum of understanding in preparation