Searching for QCD Dark-Matter Axions with ADMX

DESY Physics Seminar May 12, 2015

Leslie J Rosenberg

University of Washington

Outline

Basic axion properties

"Flagship" searches: ALPS (laser) CAST/IAXO (solar) *** ADMX (RF cavity)

Overall status of axion searches

DESY 12may15 LJR 2

The longstanding problem of dark matter

FIRST ATTEMPT AT A THEORY OF THE ARRANGEMENT AND MOTION OF THE SIDEREAL SYSTEM¹

By J. C. KAPTEYN²

ABSTRACT

First attempt at a general theory of the distribution of masses, forces, and velocities in the stellar system. (1) Distribution of stars. Observations are fairly well represented, at least up to galactic lat. 70°, if we assume that the equidensity surfaces are similar ellipsoids of revolution, with axial ratio 5.1, and this enables us to compute quite emptods of recommon, with a har ratio 5.1, and this chapter is to compute quite readily (2) the gravitational acceleration at various points due to such a system, by summing up the effects of each of ten ellipsoidal shells, in terms of the acceleration due to the average star at a distance of a parsec. The total number of stars is taken as $4.74 \times 10^{\circ}$ (3) Random and rotational velocities. The nature of the equidensity surfaces is such that the stellar system cannot be in a steady state unless there is a general rotational motion around the galactic polar axis, in addition to a random motion analogous to the thermal agitation of a gas. In the neighborhood of the axis, however, there is no rotation, and the behavior is assumed to be like that of a gas at uniform temperature, but with a gravitational acceleration (G_{η}) decreasing with the distance ρ . Therefore the density Δ is assumed to obey the barometric law: $G\eta = -\bar{u}^2 (\delta \Delta / \delta \rho) / \Delta$; and taking the mean random velocity \bar{u} as 10.3 km/sec., the author finds that (4) the mean mass of the stars decreases from 2.2 (sun = 1) for shell II to 1.4 for shell X (the outer shell), the average being close to 1.6, which is the value independently found for the average mass of both components of visual binaries. In the galactic plane the resultant acceleration-gravitational minus centrifugal-is again put equal to $-\bar{u}^2(\delta\Delta/\delta\rho)/\Delta$, \bar{u} is taken to be constant and the average mass is assumed to decrease from shell to shell as in the direction of the pole. The angular velocities then come out such as to make the linear rotational velocities about constant and equal to 19.5 km/sec. beyond the third shell. If now we suppose that part of the stars are rotating one way and part the other, the relative velocity being 39 km/sec., stars are rotating one way and part the other, the relative velocity being 30 km/sec., we have a quantitative explanation of the phenomenon of star-streaming, where the relative velocity is also in the plane of the Milky Way and about 40 km/sec. It is jncidentally suggested that when the theory is perfected it may be possible to deter-mine the amount of dark matter from its gravitational effect. (5) The chief defects of the theory are: That the equidensity surfaces assumed do not agree with the actual surfaces, which tend to become spherical for the shorter distances; that the *position* of the surface of the surface accurated but is prachable located to pain the surface of the surface accurated but is prachable located to paint surfaces, which tend to become spherical for the solution distribution of the system is not the sun, as assumed, but is probably located at a point some 650 parsecs away in the direction galactic long, γ° , lat. -3° ; that the average mass of the stars was assumed to be the same in all shells in deriving the formula for the variation of $G\eta$ with ρ on the basis of which the variation of average mass from shell to shell and the constancy of the rotational velocity were derived-hence either the assumption or the conclusions are wrong; and that no distinction has been made between stars of different types.

1. Equidensity surfaces supposed to be similar ellipsoids.—In Mount Wilson Contribution No. 188³ a provisional derivation was given of the star-density in the stellar system. The question was there raised whether the inflection appearing near the pole in the

- ¹ Contributions from the Mount Wilson Observatory, No. 230.
- ² Research Associate of the Mount Wilson Observatory.
- 3 Astrophysical Journal, 52, 23, 1920.

302

Kapetyn 1922

as to the distribution of dark matter. It would appear from the comparison that the dark mass must be relatively more frequent near the galactic plane than far from it, but the data are too uncertain to derive numerical results. A similar conclusion was reached by KAPTEYN in the investigation quoted above.

Recognized by Oort 1932

... then Zwicky, Smith ...

Now: We've inventoried the cosmos ...

Science (20 June 2003)

... but we know neither what the "dark energy" or the "dark matter" is. These are two of the very big questions.

What do we know about the nature of dark matter? Its not normal matter or radiation and it's "cold"

(1) From light element abundance:Dark matter probably isn't bowling balls or anything else made of baryons.

(2) Is dark matter made of, e.g., light neutrinos?

Probably not: fast moving neutrinos would have washed-out structure.

Dark matter is substantially "cold".

(3) "Dark matter: I' m much more optimistic about the dark matter problem. Here we have the unusual situation that two good ideas exist..."

Frank Wilczek in Physics Today

Frank's referring to WIMPS and Axions

New idea: Why does QCD conserve the symmetry CP?

1973: QCD...a gauge theory of color. QCD theory embedded the observed conservation of C, P and CP.

1975: QCD + "instantons" \Rightarrow QCD is expected to be hugely CP-violating.

13 Octobe

Peccei and Quinn: CP conserved through a hidden symmetry

QCD CP violation should, e.g., give a large neutron electric dipole moment $(\mathcal{T} + CPT = \mathcal{OP})$; none is unobserved. (9 orders-of-magnitude discrepancy)

$$T\left(\begin{array}{c}\mu_{n,\downarrow\downarrow}d_{n}\\\mu_{n}\rangle\\\mu_{n}\end{array}\right)=\underbrace{\mu_{n}}^{\downarrow\uparrow}d_{n}\neq|n\rangle$$

Why doesn't the neutron have an electric dipole moment? $d_e < 3 \cdot 10^{-26} e\text{-cm}$ Baker et al. 2006

This leads to the "Strong CP Problem": Where did QCD CP violation go?

1977: Peccei and Quinn: Posit a hidden broken U(1) symmetry ⇒
1) A new Goldstone boson (the axion);
2) Remnant axion VEV nulls QCD CP violation.

What's a QCD axion? Selected axion couplings & the important two-photon coupling

A process with small model uncertainty Exploited in certain terrestrial searches Easily calculable

Rate depends on "unification group" (that is, the particles in the loops), ratio of u/d quark masses, and mostly f_{PQ}

$$g_{a\gamma\gamma} \sim \frac{\alpha}{f_{PQ}} (\frac{E}{N} - 1.95)$$

A process with larger model uncertainty Can occur, e.g., in the Sun Contains unknown $U(1)_{PQ}$ charge of electron (e.g., white-dwarf cooling)

Summary properties of the axion

- The Axion is a light pseudoscalar resulting from the Peccei-Quinn mechanism to enforce strong-CP conservation
- f_a, the SSB scale of PQ-symmetry, is the one important parameter in the theory

Axions in particle physics: From A. Nelson

Present bounded window of allowed "QCD" axion masses

Some properties of dark matter:

Almost no interactions with normal matter and radiation ("dark..."); Gravitational interactions ("...matter"); Cold (slow-moving in the early universe);

Dark matter properties are those of a low-mass axion: Low mass axions are an ideal dark matter candidate:

"Axions: the thinking persons dark-matter candidate", Michael Turner.

Plus...

The axion mass is constrained to 1 or 2 orders-of-magnitude; Some axion couplings are constrained to 1 order-of-magnitude; The axion is doubly-well motivated...it solves 2 problems (Occam's razor).

"Despite a lot of effort that has gone into understanding the axion emissionDESY 12may15 LJR13rate, these limits remain fairly rough estimates." Georg Raffelt

Search 1: Photon regeneration ("shining light through walls")

 $P(\gamma \rightarrow a \rightarrow \gamma) \sim 1/16 (gB_0L)^4$

Search 1: resonantly enhanced photon regeneration

where η, η' are the mirror transmissivities & F, F' are the finesses of the cavities

For
$$\eta \sim 10^{(5-6)}$$
, the gain in rate is of order $10^{(10-12)}$
and the limit in $g_{a\gamma\gamma}$ improves by $10^{(2.5-3)}$

DESY 12may15 LJR 15

Flagship Search 1: ALPS-II at DESY

(d) ALPS-IIc

Flagship Search 2: CERN Axion Solar Telescope (CAST). Searching for axions produced in the Sun.

Search 2: CAST Technology

State-of-the-art x-ray detection borrowed from astrophysics

DESY 12may15 LJR 18

Search 2: Helioscope Futurism IAXO

Recall:

The axion couples (very weakly, indeed) to normal particles.

But it happens that the axion 2γ coupling has relatively little axion-model dependence

Axions constituting our local galactic halo would have huge number density ~10¹⁴ cm⁻³

Pierre Sikivie's RF-cavity idea (1983): Axion and electromagnetic fields exchange energy

The axion-photon coupling...

... is a source term in Maxwell's Equations

$$\frac{\partial \left(\mathbf{E}^2 / 2\right)}{\partial t} - \mathbf{E} \cdot \left(\nabla \times \mathbf{B}\right) = g_{a\gamma} \dot{a} (\mathbf{E} \cdot \mathbf{B})$$

This leads to many possible experimental approaches.

One approach is to impose a strong external magnetic field B; this transfers axion field energy into cavity electromagnetic fields E.

Some experimental details of the RF-cavity technique

Flagship Search 3: Axion Dark-Matter eXperiment (ADMX)

U. Washington, LLNL, U. Florida, U.C. Berkeley, National Radio Astronomy Observatory, Sheffield U., Yale U.

+ ... (recently expanded) Magnet with insert

Magnet cryostat

DESY 12may15 LJR 23

ADMX is Generation 2 Dark-Matter Detector

breaking July 11, 2014 Courtesy of NASA

US reveals its next generation of dark matter experiments

Together, the three experiments will search for a variety of types of dark matter particles.

By Kathryn Jepsen

🖪 🎐 👂 🛅 😽 🖂

Two US federal funding agencies announced today which experiments they will support in the next generation of the search for dark matter.

Symmetry Magazine

ADMX key hardware 1

high-Q microwave cavity

Experiment insert

DESY 12may15 LJR 25

ADMX key hardware 2: Tuning

Cavity with lid off, showing tuning rods

Field simulation of TM010 mode, no rods

ADMX key hardware 3

Vacuum and cryo

Quantum electronics

ADMX key hardware 4: axion receiver

ADMX: Multi-mode readout

DESY 12may15 LJR 29

A brief digression on microwave amplifiers

HFET amplifiers (Heterojunction Field-Effect Transistor)

- A.k.a. HEMT[™] (High Electron Mobility Transistor)
- Workhorse of radio astronomy, military communications, etc.
- Best to date $T_N \gtrsim 1 K$

But the quantum limit $T_Q \sim hv/k$ at 500 MHz is only ~ 25 mK!

A quantum-limited amplifier would both give us definitive sensitivity, *and* dramatically speed up the search!

Quantum-limited SQUID-based amplification

Microstrip SQUID amplifiers with varactor tuning

Au bonding pads

SQUID washer

varactor tuning

SQUIDs and lower system noise

Raw data and hardware synthetic axion (×100)

Operations include searches for exotics: "Chameleons" & hidden-sector photons

Chameleons

Scalars/pseudoscalars that mix with photons, and are trapped by cavity walls. Arise in some dark energy theories. Detectable by slow decay back into photons in cavity

Hidden-sector photons

Vector bosons with photon quantum numbers and very weak interactions. Detectable by reconverting HSPs back into photons in ADMX cavity

Chameleons: How experiment worked

ADMX as a chameleon-photon regenerator

Step 1: Injected RF power excites E&M and chameleon modes

Timescale: 10 minutes Power in ~25 dBm

Step 2: Power is turned off, E&M modes decay

Timescale: 100 milliseconds

Step 3: Chameleon modes slowly decay into E&M modes which are detected through antenna

Timescale: 10 minutes Sensitivity ~10⁻²² W Bandwidth ~20 kHz

(Step 4: tune rods ~10 kHz and repeat)

Chameleons

One day of running set limits 100 times more sensitive than that from FNAL.

Hidden-Sector Photons: Another dark-matter candidate

Hidden Sector Photons: Results

Next phase projected to extend limits by more than a factor of 10.

ADMX infrastructure

DESY 12may15 LJR 40

Assembling the experiment insert

Installation of bucking coil

DESY 12may15 LJR 41

Quantum-electronics

SQUIDs (at lower frequencies)

"JPAs" (at higher frequencies)

bucking coil and "squidadel"

DESY 12may15 LJR 43

Cavity, tuning and coupling

High-frequency (high axion mass) "side car" cavity

DESY 12may15 LJR 45

ADMX insert going into and out the magnet bore

Science, Nov. 2013, 552 - 555

Typical ADMX Run Cadence

- Inject broad swept RF signal to record cavity response. Record state data (temperature sensors, hall sensors, pressure, etc.).
- Integrate for ~ 80 seconds (final integration time based on results from cold commissioning).
- Move tuning rod to shift TM₀₁₀ & TM₀₂₀ modes
 (~1 kHz at a time).
- Every few days adjust critical coupling of TM₀₁₀
 & TM₀₂₀ antennas.
- Anticipated scan rate ~100 MHz (0.5 μeV) every 3 months

ADMX Gen 2: Science Prospects

Gen 3 and beyond: Can the RF-cavity experiments do better? Very high frequencies, higher Q, etc. ?

higher-frequency, large volume resonant structures

Gen 3: Low-frequency R&D

*work from H. Swan (UW)

An experimental scenario for QCD dark-matter axions: Focus on three "flagship" technologies in the near term

Theory challenges going forward (1) include

e.g, White dwarfs: Can we better understand their cooling?

Isern et al., 2012

Figure 1: White dwarf luminosity function. The solid lines represent the models obtained with (up to down) $g_{\text{aee}}/10^{-13} = 0, 2.2, 4.5$ respectively.

DESY 12may15 LJR 52

Theory challenges going forward (2) include

Gamma ray propagation:

e.g., Can we better understand gamma-ray propagation?

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 1 March 2012 (MN LATEX style file v2.2)

Evidence for an axion-like particle from PKS 1222+216?

F. Tavecchio^{1*}, M. Roncadelli², G. Galanti³, G. Bonnoli¹

¹INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, Italy

²INFN, Sezione di Pavia, Via A. Bassi 6, I-27100, Pavia, Italy

³Dipartimento di Fisica, Università dell'Insubria, Via Valleggio 11, I–22100, Como, Italy

1 March 2012

ABSTRACT

The surprising discovery by MAGIC of an intense, rapidly varying very high energy (E > 50GeV) emission from the flat spectrum radio quasar PKS 1222+216 represents a challenge for all interpretative scenarios. Indeed, in order to avoid absorption of γ rays in the dense ultraviolet radiation field of the broad line region (BLR), one is forced to invoke the existence of a very compact ($r \sim 10^{14}$ cm) emitting region at a large distance ($R > 10^{18}$ cm) from the jet base. We present a scenario based on the standard blazar model for PKS 1222+216 where γ rays are produced close to the central engine, but we add the new assumption that inside the source photons can oscillate into axion-like particles, which are a generic prediction of many extensions of the Standard Model of elementary particle interactions. As a result, a considerable fraction of photons can escape absorption from the BLR much in the same way as they largely avoid absorption from extragalactic background light when propagating over cosmic distances. We show that observations can be explained in this way for reasonable values of the model parameters, and in particular we find it quite remarkable that the most favourable value of photon-ALP coupling happens to be the same in both situations. An independent laboratory check of our proposal can be performed by the planned upgrade of the ALPS experiment at DESY.

Key words: radiation mechanisms: non-thermal $-\gamma$ -rays: theory - galaxies: individual: PKS 1222+216

Conclusions (1)

Listen to Nature: We're keeping our eye on the LHC and WIMP detectors.

The jury is certainly still out, but if SUSY-WIMPs remain undetected, you might want to look harder at axions.

Conclusions (2)

On the other hand, some say, LHC finding SUSY may strongly suggest axion dark matter.

Why thermally-produced neutralinoonly DM is not the answer (in spite of the hype):

 ${\rm extbf{ \ or too little DM; only }}$ arely is $\Omega_{_{\!Y}}^{std}h^2\sim 0.11\,$: fine-tuned!

@ gravitino problem and BBN constraints

neglects the strong CP problem and its solution

H. Baer

mSUGRA model with mixed axion/axino CDM: $m_{\tilde{a}}$ fixed

 $(m_0, m_{1/2}, A_0, \tan\beta, sgn(\mu)) = (1000 \text{ GeV}, 300 \text{ GeV}, 0, 10, +1)$ $\Omega_a h^2 + \Omega_{\tilde{a}}^{TP} h^2 + \Omega_{\tilde{a}}^{NTP} h^2 = 0.11$

model with *mainly* axion CDM favored for large T_R !

Overall Conclusions

Axions: A very compelling dark-matter candidate.

The QCD dark-matter axion is well bounded in mass and couplings. The dark-matter axion focus is 1-100 μ eV axion masses.

There are many search techniques, but the RF-cavity one is most sensitive. ADMX is largest and most mature; several others are on the horizon. The next several years will either see a discovery or reject the QCD dark-matter axion hypothesis.

The space of variant axion (non "QCD") models is wide open. Large efforts are underway for solar axions and laser experiments. And ideas are out there for searching for very low-mass & high-mass axions

Quite starkly: These experiments have the sensitivity and mass reach to either detect or rule out QCD dark-matter axions at high confidence.

We gratefully acknowledge the generous support of the U.S. Department of Energy, Office of High Energy Physics