Neutrinos & gamma rays
Complementary views on the high-energy universe.

Markus Ackermann
Physikseminar
Hamburg, 13.01.2015
What is the connection of the observed non-thermal emission to the cosmic rays at Earth?

What are the sites that can accelerate particles to $> 10^{20}$ eV?

Which cosmic accelerators dominate the CR flux in which energy range?
Are cosmic rays important?

Energy densities in the Milky Way

<table>
<thead>
<tr>
<th>Energy density</th>
<th>Milky Way-like spiral galaxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmic rays</td>
<td>0.8 eV / cm³</td>
</tr>
<tr>
<td>CMB</td>
<td>0.3 eV / cm³</td>
</tr>
<tr>
<td>Starlight</td>
<td>0.5 eV / cm³</td>
</tr>
<tr>
<td>Magnetic fields</td>
<td>~ 0.3 eV / cm³</td>
</tr>
<tr>
<td>Gas pressure</td>
<td>~ 0.5 eV / cm³</td>
</tr>
</tbody>
</table>

> Cosmic rays
 - **heat** the interstellar gas
 - **interact** with the magnetic fields
 - **influence** star formation

→ They are important for Galaxy dynamics
What are the mechanisms driving such extreme particle acceleration?

- Diffusive shock acceleration
- Acceleration in plasma turbulence
- Magnetic reconnection
- Electrostatic gaps

What can we learn about the astrophysical environments?

- gas & photon densities
- magnetic fields
- bulk motion
Signatures of new physics in the universe.

> Some high-energy particles might not have been accelerated…

> …but have been produced in the annihilation or decay of massive particles.

> Many particle physics motivated models for dark matter predict observable signatures in the non-thermal sky.

large scale dark matter distribution

simulated γ-ray emission from dark matter annihilation

www.particlezoo.net
Every messenger is unique.

Charged particles: p, N, e^\pm

Photons

Neutrinos
The multi-messenger approach.

> Every messenger is unique.

- Photons
- Neutrinos
- Charged particles: p, N, e±
- Elemental composition: Fe, He
- Energy budget / spectrum
The multi-messenger approach.

> Every messenger is unique.

- Photons
- Neutrinos
- Charged particles: p, N, e±

Elemental composition
Energy budget / spectrum

- Inverse Compton
- Synchrotron
- Photons
- Neutrinos
- Bremsstrahlung
- p-p interactions
The multi-messenger approach.

> Every messenger is unique.

Charged particles:
- p, N, e±

Elemental composition
- Fe
- He
- e

Energy budget / spectrum

p-p interactions
- p
- π^0
- π^+
- γ
- μ
- e
- ν_μ
- ν_e

Photons

Neutrinos
Topics addressed in this talk

> A measurement of the total extragalactic **high-energy** gamma-ray emission in the universe

 ▪ …and what we know about the sources that produce it.

> The **connection** to CR production/propagation, dark matter annihilation & new physics.

> The **very special value** of astrophysical neutrinos.
Gamma-ray astronomy.

<table>
<thead>
<tr>
<th>Space based</th>
<th>Ground based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermi LAT</td>
<td>HESS, MAGIC, Veritas</td>
</tr>
<tr>
<td>30 MeV - 1 TeV</td>
<td>50 GeV - 100 TeV</td>
</tr>
<tr>
<td>20% of the sky</td>
<td>~ 0.02% of the sky</td>
</tr>
<tr>
<td>~1 m²</td>
<td>~10000 m²</td>
</tr>
<tr>
<td>85% of the year</td>
<td>10% of the year</td>
</tr>
<tr>
<td>Instruments</td>
<td>Field-of-view</td>
</tr>
<tr>
<td>Energy range</td>
<td>~ 0.02% of the sky</td>
</tr>
<tr>
<td>Effective area</td>
<td>~10000 m²</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>Duty cycle</td>
</tr>
<tr>
<td></td>
<td>10% of the year</td>
</tr>
</tbody>
</table>
The GeV gamma-ray sky.

Fermi LAT, 4-year sky map, $E > 1$ GeV

Fermi LAT images the full non-thermal sky above 100 MeV
The GeV gamma-ray sky.

Fermi LAT, 4-year sky map, E > 1 GeV

> Fermi LAT images the full non-thermal sky above 100 MeV
The GeV gamma-ray sky.

Fermi LAT, 4-year sky map, $E > 1$ GeV

Resolved sources

Galactic diffuse emission
(CR interactions with the interstellar medium)
Inverse Compton
π^0-decay
Bremsstrahlung
The GeV gamma-ray sky.

Fermi LAT, 4-year sky map, \(E > 1 \) GeV

- Resolved sources
- Isotropic diffuse emission (IGRB)
- Galactic diffuse emission
 - (CR interactions with the interstellar medium)
 - Inverse Compton
 - \(\pi^0 \)-decay
 - Bremsstrahlung
The extragalactic GeV gamma-ray sky.

Fermi LAT, 4-year sky map, $E > 1$ GeV

Resolved sources

Isotropic diffuse emission (IGRB)

The extragalactic sky

$> \text{Fermi LAT images the full non-thermal sky above 100 MeV}$
The extragalactic GeV gamma-ray sky.

Fermi LAT images the full non-thermal sky above 100 MeV
A census of the sky: 3FGL

> 3FGL: 3rd Fermi LAT gamma-ray source catalog based on 4 years of data
 - Systematic scan of the sky for sources, source identification or association
 - Replaces 2FGL based on 2 years of data

<table>
<thead>
<tr>
<th></th>
<th>2FGL</th>
<th>3FGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1873</td>
<td>3033</td>
</tr>
<tr>
<td>Unassociated</td>
<td>649</td>
<td>992 (33%)</td>
</tr>
<tr>
<td>AGNs</td>
<td>991 + 28 (ID) (57%)</td>
<td>1691 + 66 (ID) (58%)</td>
</tr>
<tr>
<td>PSRs</td>
<td>25 + 83 (ID)</td>
<td>29 + 137 (ID)</td>
</tr>
<tr>
<td>PWN</td>
<td>3 (ID)</td>
<td>2+9 (ID)</td>
</tr>
<tr>
<td>SNR</td>
<td>4 +6 (ID)</td>
<td>11+12 (ID)</td>
</tr>
<tr>
<td>GLC</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>SBG</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>HMB</td>
<td>4 (ID)</td>
<td>3 (ID)</td>
</tr>
<tr>
<td>spp</td>
<td>58</td>
<td>51</td>
</tr>
<tr>
<td>Others</td>
<td>7 (gal+Nova+)</td>
<td>11 (gal+Nova+BIN+)</td>
</tr>
<tr>
<td>Extended</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>High/Low</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
A census of the sky: 3FGL

> 3FGL: 3rd Fermi LAT gamma-ray source catalog based on 4 years of data
 - Systematic scan of the sky for sources, source identification or association
 - Replaces 2FGL based on 2 years of data

<table>
<thead>
<tr>
<th></th>
<th>2FGL</th>
<th>3FGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1873</td>
<td>3033</td>
</tr>
<tr>
<td>Unassociated</td>
<td>649 (35%)</td>
<td>992 (33%)</td>
</tr>
<tr>
<td>AGNs</td>
<td>991 + 28 (ID) (57%)</td>
<td>1691 + 66 (ID) (58%)</td>
</tr>
<tr>
<td>SBG</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>High/Low</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

Active Galactic Nuclei:
- Blazars
- Radio Galaxies
- Seyfert Galaxies

No compelling association to a known source

Starburst Galaxies

Elisabetta Cavazzuti
5th Fermi Symp.
Nagoya, 2014
Active Galactic Nuclei

> The overwhelming majority of extragalactic LAT sources are Active Galactic Nuclei (AGN)

> **Blazars:**
 - Observer line-of-sight into the relativistic jet
 - Relativistic doppler boost of intensities

> **Misaligned AGN:**
 - Large viewing angle to jet
 - Characterization by radio emission properties
The 3rd LAT AGN catalog

> 1591 high-latitude LAT sources associated with AGN
 - 1559 associated with Blazars
 - 32 associated with misaligned radio Galaxies

> Blazars are the dominant extragalactic gamma-ray sources

> Large fraction of unidentified sources are likely Blazars.

Benoit Lott
5th Fermi Symp.
Nagoya, 2014
Star-forming / Starburst Galaxies.

- 4 starburst galaxies detected with the LAT
- 4 local “normal” galaxies detected.
 - Andromeda, LMC, SMC & Milky Way
- Weak gamma-ray sources, but very abundant in the universe
Sources on the extragalactic gamma-ray sky

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Number of sources visible</th>
<th>Luminosity</th>
<th>Density in the universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blazars</td>
<td>~ 1500</td>
<td>bright</td>
<td>low</td>
</tr>
<tr>
<td>Misaligned active Galaxies</td>
<td>32</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>Starforming Galaxies</td>
<td>8</td>
<td>dim</td>
<td>high</td>
</tr>
<tr>
<td>Unknown</td>
<td>~ 1000</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
The extragalactic GeV gamma-ray sky

Fermi LAT, 4-year sky map, $E > 1$ GeV

Isotropic diffuse emission (IGRB)

> Fermi LAT images the full non-thermal sky above 100 MeV
Strong sources: All sources can be detected individually.

30 events / source
Source detection: Intermediate sources

- **Intermediate sources**: Some sources can be detected individually.
- Source detection efficiency is $< 100\%$
Source detection: Weak sources

> **Weak sources**: Cannot be detected individually

> Isotropic distribution of events (if source distribution is isotropic)

0.3 events / source
The real case: A mixture of weak & strong sources

> Part of the intensity of a source population can be resolved into individual sources
> The remaining part **contributes to a diffuse background.**
> Dependent on instrument sensitivity, PSF and population properties.
The origin of the IGRB in the LAT energy range.

Undetected sources

Blazars
- Dominant class of LAT extragalactic sources.

Misaligned active Galaxies
- 27 sources resolved in 2FGL.

Star-forming galaxies
- Some galaxies outside the local group resolved by LAT.

GRBs + High-latitude pulsars
- Only small contributions expected.

Diffuse processes

Intergalactic shocks
- produced in galaxy cluster mergers

Dark matter annihilation
- Potential signal dependent on nature of DM.

Interactions of UHE cosmic rays with the EBL
- Strongly dependent on evolution of UHECR sources.
Derivation of the isotropic gamma-ray background.

\[\text{Solar disk and IC} + \text{Resolved sources (2FGL)} + \text{Isotropic emission} = \text{Isotropic \(\gamma \)-ray background (IGRB)} \]

Not used in analysis:
- Galactic plane
- Regions with dense molecular clouds
- Regions with non-local atomic hydrogen clouds

- Interstellar gas
- Inverse Compton (IC)
- Loop I / Local Loop
- Galactic diffuse emission

Contamination from CR induced background
Results from the IGRB fit.

- **IGRB and CR contributions** to isotropic emission
- **Spectral fit of IGRB** by power-law with exponential cutoff.

> Based on **50 months of reprocessed LAT data**.

> **Average intensities** ($|b| > 20^\circ$) attributed to model templates.

> **Baseline foreground model** used.

The IGRB spectrum

> Error bars:
- statistical error
- + syst. error from effective area parametrization
- + syst. error from CR background subtraction

> Yellow band:
- systematic uncertainties from foreground model variations.

> IGRB spectrum can be parametrized by single power-law + exponential cutoff.

> Spectral index \(~ 2.3\) , cutoff energy \(~ 250\ \text{GeV}\).

> It is not compatible with a simple power-law \(\chi^2 > 85\).
The isotropic and the total extragalactic background.

Intensity that can be **resolved into sources** depends on:
- the sensitivity of the instrument.
- the exposure of the observation.

→ The **isotropic γ-ray background** depends on the sensitivity to identify sources.

→ Important as an **upper limit on diffuse processes**.

→ The **total extragalactic γ-ray background** is instrument and observation independent.

→ Useful for **comparisons with source population models**.
Comparison of LAT IGRB and EGB measurements

> Total extragalactic gamma-ray background (EGB) = IGRB + resolved sources.
> **Integrated intensity** of IGRB about **30% below** measurement in Abdo et al. 2010.
> **Compatible** within systematic uncertainties.
> **Main differences**: Improved diffuse foreground and CR background models.

Why is it so important?

Cosmic x-ray and gamma-ray background now measured over 9 orders of magnitude in energy.

The universe is transparent to gamma-rays (E<~10 GeV) to z > 10.
Contributions of known extragalactic sources.

At low energies:
- 10% - 20% contribution from star-forming galaxies
- 10% - 50% from misaligned AGN

Blazars seem to dominate at GeV energies.

~ 30% left for diffuse processes
Constraints on gamma-ray emission from DM annihilation.

Tight limits on contributions from diffuse processes, e.g. dark matter annihilation.
Constraints on the density of primordial black holes

> Primordial black holes evaporate into gamma rays (and other particles).

> $T_{BH} \sim 1/M_{BH}$
And the next step is....
No, **NOT** CTA !!*

* Disclaimer: This statement is true ONLY for the measurement of the diffuse gamma-ray background.

CTA will do a lot of great science!!!!
Cherenkov telescopes, the EGB, and cosmic-ray electrons.

Cherenkov telescopes cannot distinguish photons and electrons at high confidence!
The high-energy EGB cut-off.

Pair production in the Extragalactic Background Light introduces an energy dependent γ-ray horizon.

→ **Cut-off feature** in the EGB spectrum above ~ 100 GeV.

- If the bulk of the intensity comes from $z > 0.1$ sources.
The gamma-ray horizon and the neutrino domain.

Learned & Mannheim, 2000
The gamma-ray horizon and the neutrino domain.

And the next step is....
Discovery of astrophysical neutrinos.

- Astrophysical neutrinos are the only way to probe the non-thermal processes in the distant universe above tens of TeV.
- Good that IceCube has proven sensitive enough to see them.
The astrophysical neutrino flux must arise from multiple sources.

- No sources seen in (more sensitive) Point Source analysis

Part of it is from high Galactic latitudes.

-Points to an extragalactic origin.

Event distribution is compatible with an isotropic neutrino flux.
Signatures of neutrinos in IceCube

Tracks
μ from CC-νμ interactions **outside** the instrumented volume

Starting tracks
μ from CC-νμ interactions **inside** the instrumented volume

Showers
v_e, v_τ and v_μ-NC interactions

Aartsen et al., 2014
Signatures of neutrinos in IceCube

Tracks
\[\mu \text{ from } \text{CC-}v_\mu \text{ interactions} \]
outside the instrumented volume

Starting tracks
\[\mu \text{ from } \text{CC-}v_\mu \text{ interactions} \]
inside the instrumented volume

Showers
\[v_e, v_\tau \text{ and } v_\mu-\text{NC interactions} \]

Aartsen et al., 2014

![Diagram showing tracks and showers in IceCube](image)
Signatures of neutrinos in IceCube

Tracks
µ from CC-νµ interactions
outside the instrumented volume

Starting tracks
µ from CC-νµ interactions
inside the instrumented volume

Showers
νe, ντ and νµ-NC interactions

Aartsen et al., 2014

several more searches, partly using construction phase data
Combination of searches in a global fit.

Global Fit of Astrophysical ν Spectrum

several more searches, partly using construction phase data

Lars Mohrmann, DESY
Extragalactic gamma rays and neutrinos.

Spectral index: $\Gamma = 2.5 \pm 0.08$

- NO indications for cutoff
- NO indications for a two-component spectrum

Lars Mohrmann, DESY
Extragalactic gamma rays and neutrinos.
The cosmic-ray / gamma / neutrino connection

> Cosmic rays interact with a target medium close to the source.

> Neutrino/Gamma production via p-p collisions

> Reprocessing of gamma rays to GeV energies

PeV cosmic rays

```
p

π^0

π^+/-

γ

μ

e

ν_μ

ν_e

v_μ

TeV-PeV Neutrinos
```

Target medium

p-p collisions

M82
The cosmic-ray / gamma / neutrino connection

- Cosmic rays interact with a target medium close to the source.
- Neutrino/Gamma production via p-p collisions
- Reprocessing of gamma rays to GeV energies
If extragalactic p-p collisions produce the observed ν → hard ν-spectrum below 10 TeV needed.

...but difficult to explain spectra considerably harder than $\Gamma \sim 2$ in p-p scenario.

First hint at p-γ interactions being the dominant neutrino production mechanism?

Or maybe that part of the signal is Galactic?
A proper calculation.

> If extragalactic p-p collisions produce the observed ν → hard ν-spectrum below 10 TeV needed.

> …but difficult to explain spectra considerably harder than $\Gamma \sim 2$ in p-p scenario.

> First hint at p-γ interactions being the dominant neutrino production mechanism?

> Or maybe that part of the signal is Galactic?

[Murase, MA & Lacki’13; updated with Fermi 1410.3696]
Search for correlation of ν to the sample of Fermi Blazars.

> Most of the extragalactic GeV gamma-ray emission is from Blazars.
> Most of the emission is resolved in individual Fermi LAT sources.
> Search for neutrino emission spatially coincident with 2LAC Blazar sample.
> Neutrino dataset for point source analysis used (several 10^5 events).

All blazars from 2-LAC – 862 objects

Thorsten Glüsenkamp, DESY
Extragalactic gamma rays and neutrinos.

Fermi LAT Blazars are NOT responsible for most of the observed ν's.

Upper limit on neutrino flux from Fermi Blazars

IceCube preliminary

$E_{\nu}^2 \Phi_{\nu}$ [GeV s$^{-1}$ sr$^{-1}$ cm$^{-2}$] vs E_{ν} [GeV]
Ultra-high energy protons produce gamma-rays and neutrinos during propagation.
Ultra-high energy protons produce gamma-rays and neutrinos during propagation.
The cosmic-ray / gamma / neutrino connection (II)

- High-energy cosmic rays interact with the EBL during propagation.

- Neutrino/Gamma production via $\pi\gamma$-interactions

- Reprocessing of gamma rays to GeV energies

EBL = extragalactic background light
The cosmic-ray / gamma / neutrino connection (II)

> High-energy cosmic rays interact with the EBL during propagation.

> Neutrino/Gamma production via $p\gamma$-interactions

> Reprocessing of gamma rays to GeV energies

EBL = extragalactic background light
Multi-messenger constraints on UHECR properties.

- CR, neutrino and gamma-ray spectrum from propagation code.
- Cosmological evolution of sources corresponds to **FR-II galaxy evolution**.
- CR sources produce protons.

Multi-messenger constraints on UHECR properties.

> CR, neutrino and gamma-ray spectrum from propagation code.
> Cosmological evolution of sources corresponds to **GRB evolution**.
> CR sources produce protons.

What we learned so far.

> The origin of more than half of the EGB can be attributed to known source populations.
 - Allows strong constrains on exotic processes in the universe.

> We see the signatures of CR acceleration / interaction up to tens of PeV in energy.
 - The origin seems to be at least partly extragalactic.

> The astrophysical neutrino spectrum between 20 TeV and 3 PeV can be described by a single power-law with index $\alpha = 2.5$.

> The EGB constrains the low-energy neutrino spectrum.
 - required hard spectrum might create tensions to an origin from p-p collisions.

> LAT Blazars are not responsible for the bulk of astrophysical neutrinos.

> There is likely no connection between the observed neutrinos and the ultra-high-energy cosmic rays
 - Need to observe a signal at higher energies.
What we will learn soon …..

→ Narrow down the source population(s) that produce high-energy cosmic rays.

> Improved accuracy of EGB measurement above 100 GeV.
> Better constraints on spectral parameters of ν-flux, extended energy range.
> Find out if there is a Galactic contribution or anisotropy to the ν-flux.
> More stringent constraints on extragalactic multi-PeV CR accelerators from the combination of EGB and astrophysical ν’s.
> Discovery of sub-dominant ν-flux contributions from Blazars, Radio Galaxies, or UHECR?
From discovery to high-statistics neutrino astronomy.

> ~100 more strings, 6 - 10 km3 instrumented volume.
> Optimized for 10 TeV - 10 PeV astrophysical neutrinos.
> ~100 M€ Investment.
Backup.