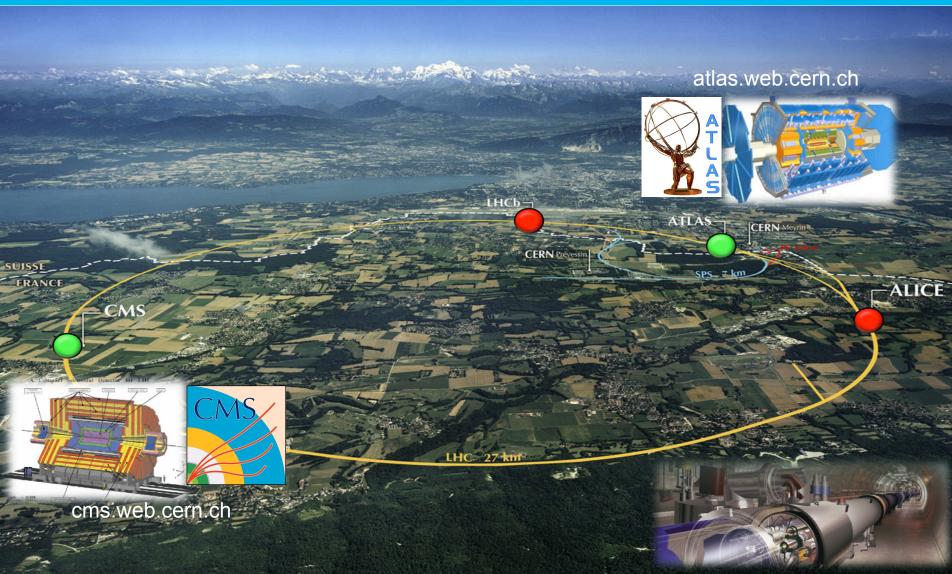
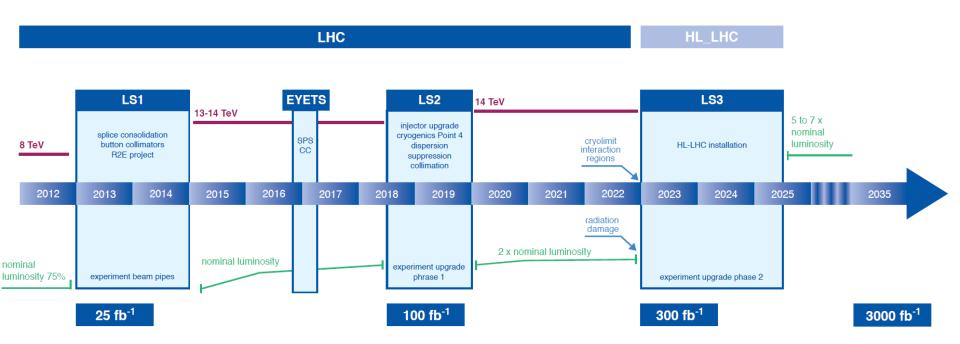
Prospect of New Physics Searches using HL-LHC

Altan Cakir DESY Hamburg, 16.09.2014

Also presented at Next Steps in the Energy Frontier


– Hadron Colliders Workshop at Fermilab, USA

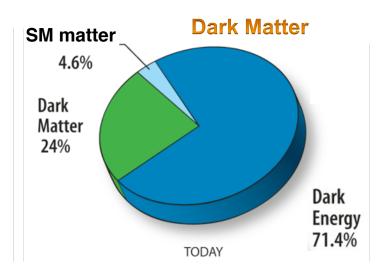
Large Hadron Collider (LHC)

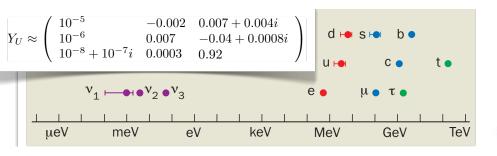


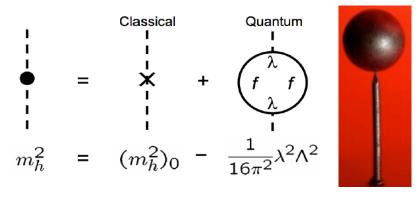
The High-Lumi LHC Project

To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value.

New LHC / HL-LHC Plan


✓ provide more accurate measurements of new particles and enable observation of rare processes that occur below the current sensitivity level.



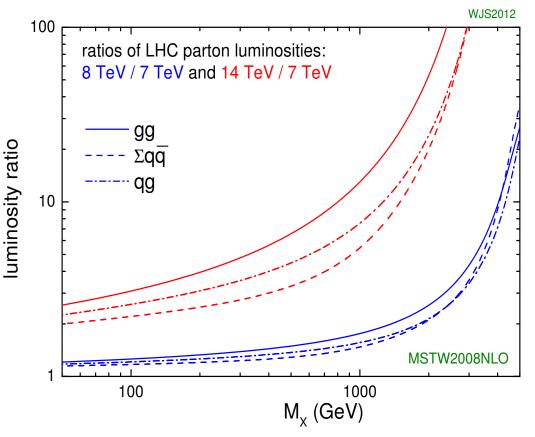

The Standard Model is incomplete: big questions

Origin of SM matter and flavor? Are particles elementary or composite?

Naturalness and fine tuning

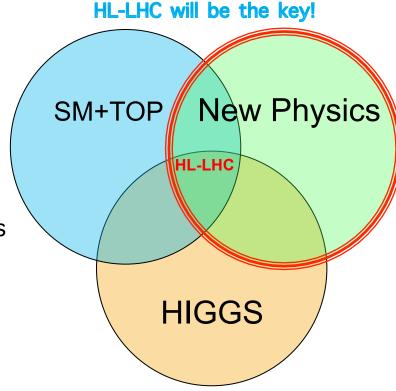
Einstein. Newton

Most interesting theories offer solutions to open problems of the SM?



Gravity

Why do we need HL-LHC?


- The discovery of new physics is one of the highest priorities for the current and future LHC
- The multi-TeV energy range will not be accessible at any other current facility.
- <u>Strategy:</u> take existing searches and figure out reach at 14 TeV, for different luminosities!
- ☑ significant impact on the physics reach of CMS and ATLAS beyond that gained by accumulating 10 or 100 times more data.
- O Discuss expected sensitivity to broad range of Beyond the SM benchmark models for new physics searches at the CMS and ATLAS collaborations.

Outline: HL-LHC Analyses

- > Supersymmetry Searches
 - Strongly produced SUSY: gluino and squarks searches
 - Third generation SUSY: direct stop and direct shottom searches
 - Electroweak production of SUSY particles
 - Vector Boson Fusion in SUSY
- Vector boson scattering and Triboson production
- ➤ Vector-like charge 2/3 quark search
- > Search for ttbar and dilepton resonances
- Search for W` and Dark Matter

ATLAS COLLABORATION:

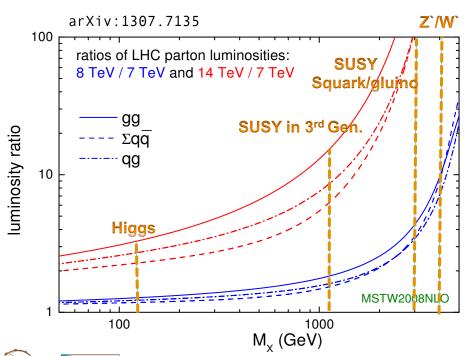
ATLAS-PHYS-PUB-2013-003, ATLAS-PHYS-PUB-2013-007, ATLAS-PHYS-PUB-2013-011, ATLAS-PHYS-PUB-2014-010 CMS COLLABORATION:

CMS-NOTE-13-002, CMS-FTR-13-006, CMS-FTR-13-014, CMS-FTR-13-026

ATLAS Collaboration → https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

CMS Collaboration

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP



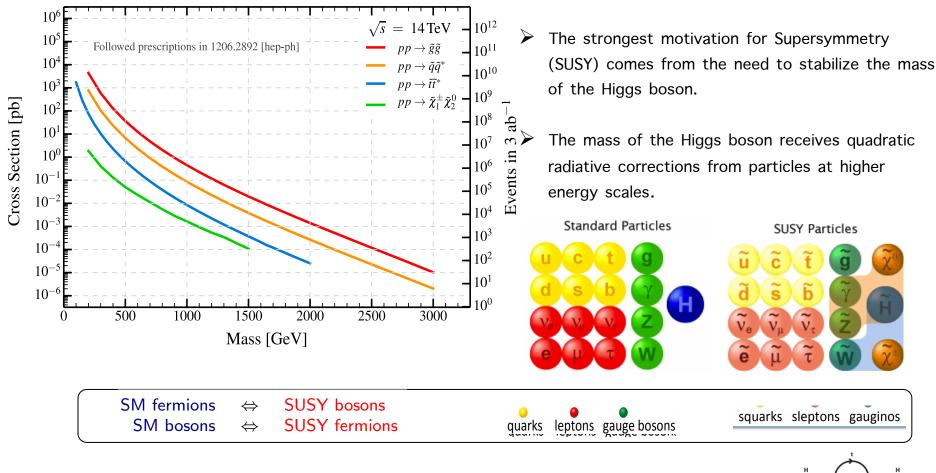
Studies of Future Physics Prospects

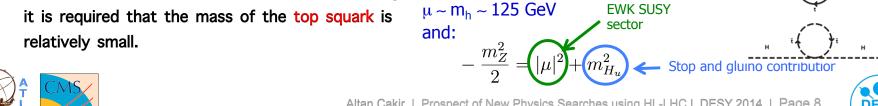
Both CMS and ATLAS studies have been performed for 5σ discovery reach with 300(0) fb⁻¹ @ 14 TeV based on 20 fb⁻¹@ 8 TeV

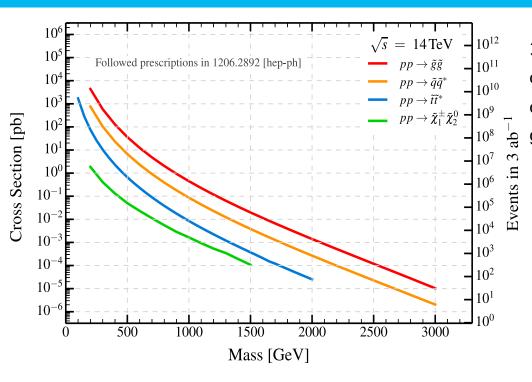
- 1 Conservative: all yields and uncertainties scaled by lumi and cross-section
- Optimistic: relative background uncertainty is assumed to be same

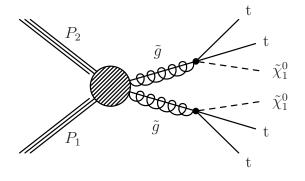
Strategies

- Only slight analysis re-optimization
- No potential degradation studies
- All analyses have individual approach for projections:

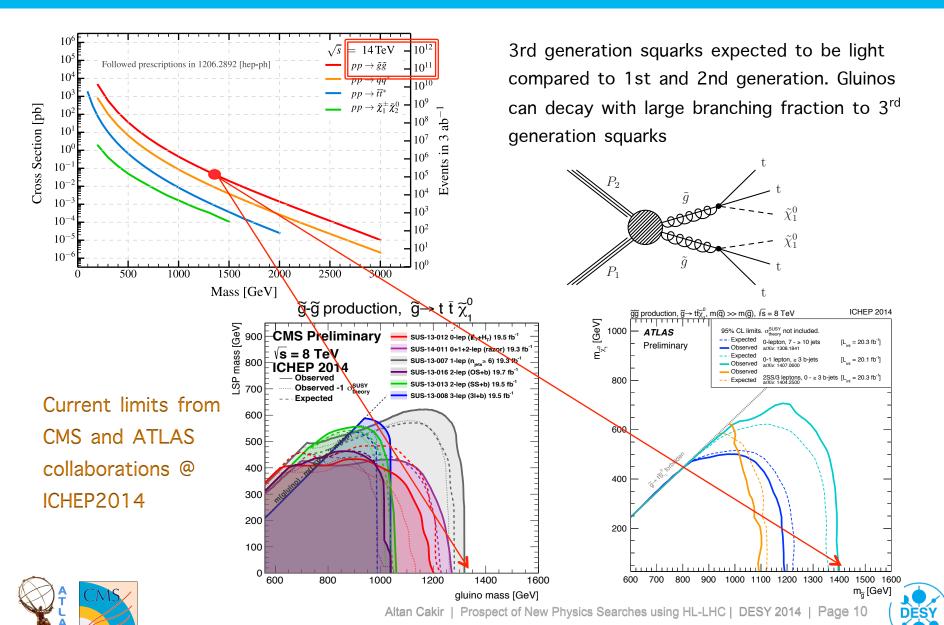

taken into account relevant parameters

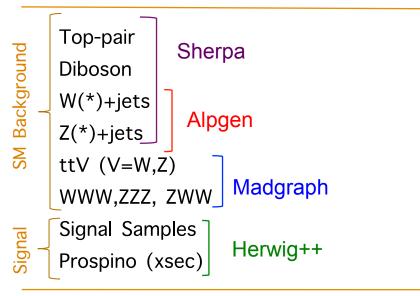



Searches for Supersymmetry at HL-LHC


In order to be "natural" (i.e. to avoid fine tuning), it is required that the mass of the top squark is

Strongly produced SUSY


3rd generation squarks expected to be light compared to 1st and 2nd generation. Gluinos can decay with large branching fraction to 3rd generation squarks


Strongly produced SUSY and Current Limits

Monte-Carlo Samples

Several Monte-Carlo (MC) generators are used to model the dominant SM processes and new physics signals relevant for the analyses.

ATLAS Collaboration

cteq6l1 Madgraph and CT10 MC@NLO and Sherpa

ATLAS fast simulation, based on parametrization of the trigger and detector response to generator level objects

CMS Collaboration

Top-pair
Diboson
W(*)+jets
Z(*)+jets
ttV (V=W,Z)
WWW,ZZZ, ZWW

Signal Samples
Prospino (xsec)

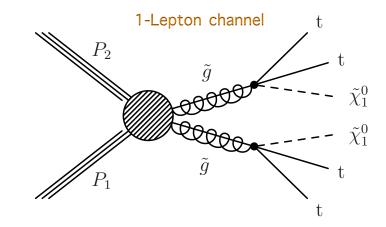
Madgraph and Pythia6

Cteq6l1 and CT10

Delphes fast simulation with CMS tuning, a few SM processes produced with full-simulation to validate Delphes simulation.

Detector

CMS-PAS-FTR-13-014 (ECFA 2013)

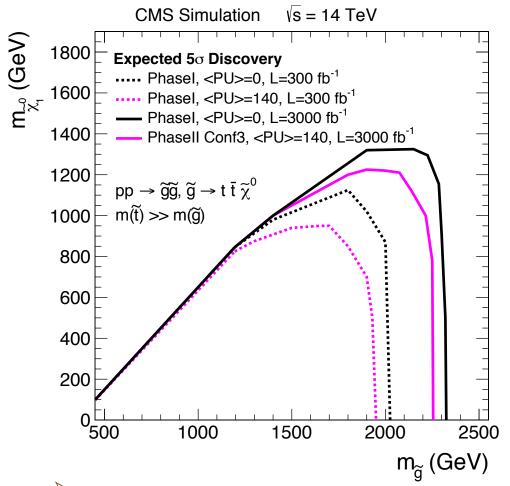

Signal topology of such events:

- Many jets and Leptons
- Among them several b-jets
- Large missing energy (E_T^{Miss})

Pre-selection of events based on:

- An isolated electron (muon) $p_T>20$ GeV and $l\eta l<2.5$ (2.1)
- Leptons veto $p_T>15$ GeV, $l\eta l<2.5$
- nJets>6 p_T >40 GeV, $l\eta l$ <2.4
- At least one b-tagged jet
- HT> 500 GeV and S_{Tlep} >250 GeV
- Δ**φ** (W, Lepton)

Single Lepton + b-tagged jets final state


$$\underbrace{N_{\rm SM}^{\rm pred}(\Delta\phi(W,\ell)>1)}_{ \mbox{Signal region}} = R_{\rm CS} \cdot \underbrace{N_{\rm data}(\Delta\phi(W,\ell)<1)}_{ \mbox{Control region}}$$

Search regions: different S_T^{Lep} (MET + Σ_i LepPt_i) bins with different b-tagged jets

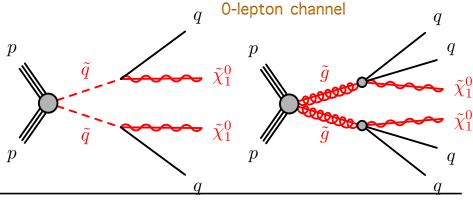
$$R_{\text{CS}} = \frac{N_{\text{signal}}}{N_{\text{control}}} = \frac{\text{Number of events with } \Delta \phi(W, \ell) > 1}{\text{Number of events with } \Delta \phi(W, \ell) < 1}$$

Search regions:

$$S_{\rm T}^{\rm lep}$$
: [450, 550), [550, 650), [650, 750), and \geq 750 GeV $N_{\rm b}$: =3, \geq 4

- ➤ The uncertainty on the total SM background assumed to be 30 %
- The mass reach is reduced due to pileup by about ~ 100 GeV

The discovery range of gluinos can be enhanced 300 GeV for 300 fb⁻¹ to 3000 fb⁻¹ up to 2.2 TeV, for χ_1^0 with mass of up to 1.2 TeV



ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

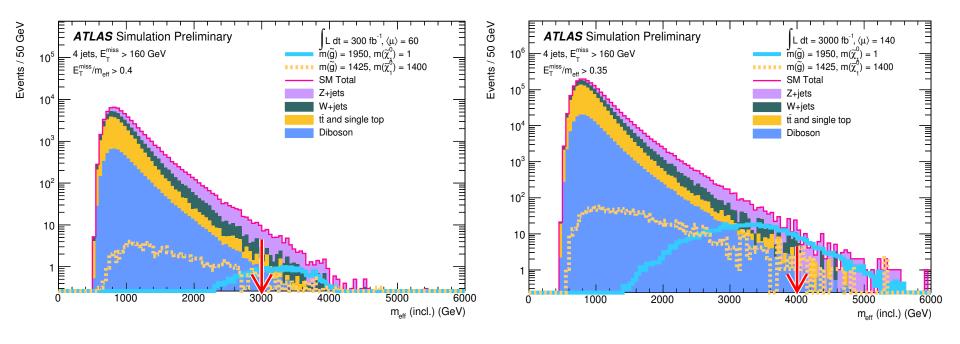
Signal topology of such events:

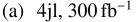
- Many jets, no leptons
- Large missing energy (E_T^{Miss})
- Use of M_{eff} and E_{T}^{Miss}/\sqrt{HT}

The selection of events based on:

					<u> </u>					<u>q</u>
Selection			(Channel						
Selection	2jl	2jm	3j	4jl	4jm	4jt	5j	6jl	6jm	6jt
$p_{\mathrm{T}}(j_1)$ [GeV] >				160						
$N_{\rm jets}(p_{\rm T} > 60 [{\rm GeV}]) \ge$		2	3		4		5		6	
$E_{\rm T}^{\rm miss}$ [GeV] >				160						
$\Delta \phi(\text{jet}, E_{\text{T}}^{\text{miss}})_{\text{min}} \text{ [rad]} >$			$0.4(j_1,j_2)$	$(2, j_3), 0.2$ (all	$p_{\rm T} > 40$	GeV jets))			
	$\langle \mu \rangle = 140,3000 \mathrm{fb^{-1}} \mathrm{scenario}$									
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}} >$	_	_	0.3	0.35	0.25	–	0.25	0.25	0.35	0.15
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} [\mathrm{GeV}^{1/2}] >$	8	15	_	_	_	10	_	_	-	_
$m_{\rm eff}~{\rm [GeV]}>$	4500, 5000	4500, 4900	4000	4000, 3800	4000	4500	4000	3400	3500	5000

The uncertainty on the total SM background is assumed to be 10%.



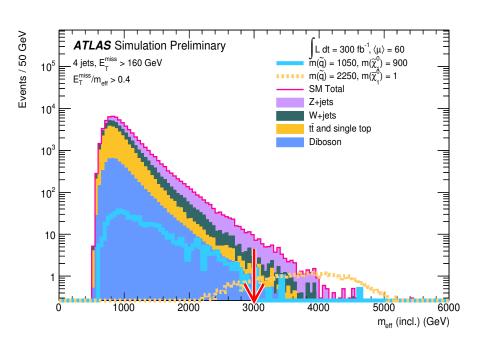


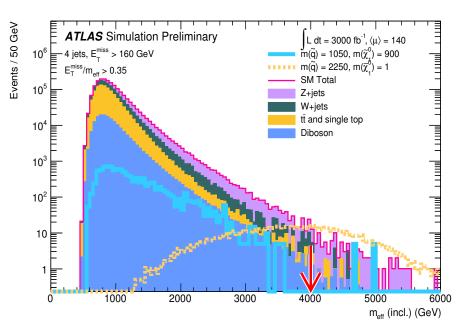
ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Multiple signal regions have been optimized with requirements on the effective mass, E_T^{miss} and HT

$$m_{\rm eff} = E_{\rm T}^{\rm miss} + \sum |p_{\rm T}^{\rm jet}|$$
 , $E_{\rm T}^{\rm miss}/m_{\rm eff}$, $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$

(b) 4jl, $3000 \, fb^{-1}$


Gluino signals



ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

- For squark-pair production two scenarios have been taken into account in this analysis:
 - The squarks are completely decoupled from gluino
 - The gluino mass is set to 4.5 TeV, which is above the expected HL-LHC
- \triangleright The difference in selection efficiencies for these scenarios is found to be <30 %.

(c) 4il, $300 \, fb^{-1}$

Squark signals

(d) 4jl, $3000 \, fb^{-1}$

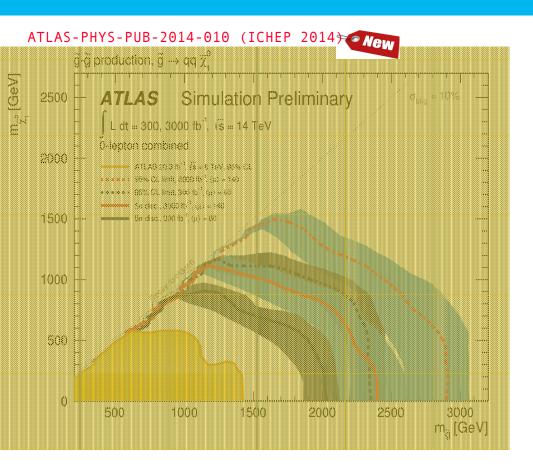
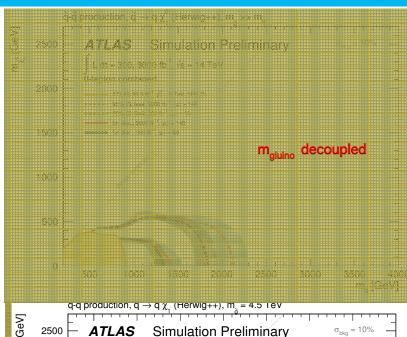
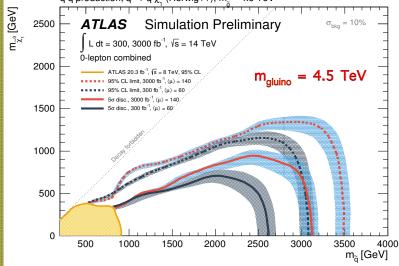
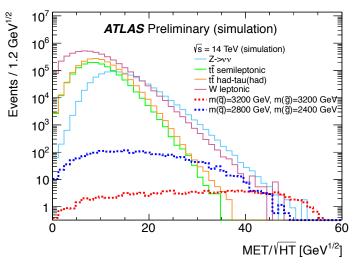
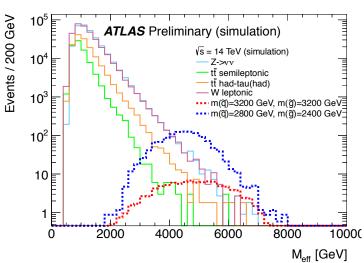
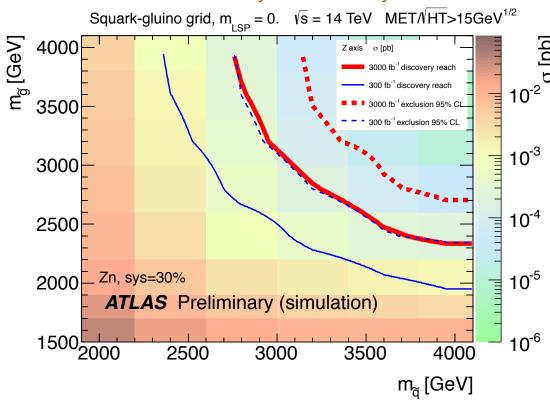




Figure 6.2 Gluinos mass reach increases from 2 TeV to $\mathbf{2.4}$ TeV, and χ_1^0 from 800 GeV to $\mathbf{1.1}$ TeV



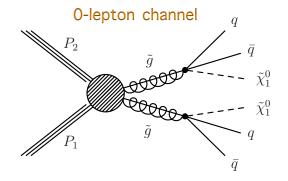




Similar analysis from last year

Gain of ~400 GeV in gluino and squark mass discovery reach (for $m_{LSP} = 0$) when going from 300 fb^{-1} to 3000 fb^{-1}

CMS-PAS-FTR-13-014 (ECFA 2013)

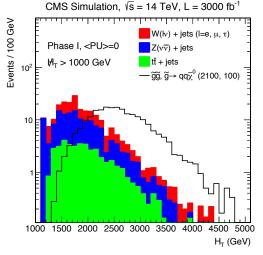

Signal topology of such events:

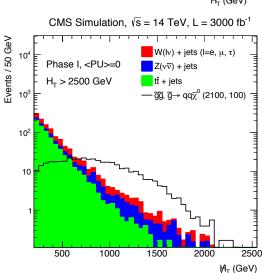
- Many jets, no leptons
- Use of $H_{\mathrm{T}} = \sum_{\mathrm{jets}} p_{\mathrm{T}}$ and $H_{\mathrm{T}} = |-\sum_{\mathrm{jets}} \vec{p}_{\mathrm{T}}|$

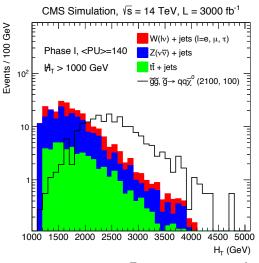
Pre-selection of events based on:

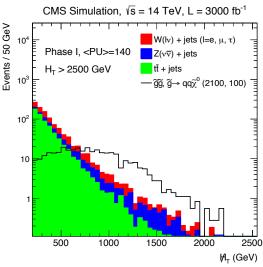
- nJets>3 p_T > 50 GeV, $l\eta l$ < 2.5
- Leptons veto $p_T>10$ GeV, $|\eta| < 2.4(2.5)$
- HT> 500 GeV and M_{HT} > 200 GeV
- HT> 500 GeV and S_{Tlep} >250 GeV
- $I\Delta \Phi$ (Jets_{1,2}, MHT)I > 0.5, $I\Delta \Phi$ (Jets₃, MHT)I > 0.3

Strategy: Several exclusive search regions defined according to nJets, HT and $M_{\rm HT}$


Search regions at 3000/fb


nJets > 6	nJets > 6
HT > 2500 GeV	HT > 1600 GeV
MHT > 1000 GeV	MHT > 700 GeV
High gluino mass	High LSP mass
SR1	SR2
nJets > 6	nJets > 6
nJets > 6 HT > 2000 GeV	nJets > 6 HT > 800 GeV
HT > 2000 GeV	HT > 800 GeV



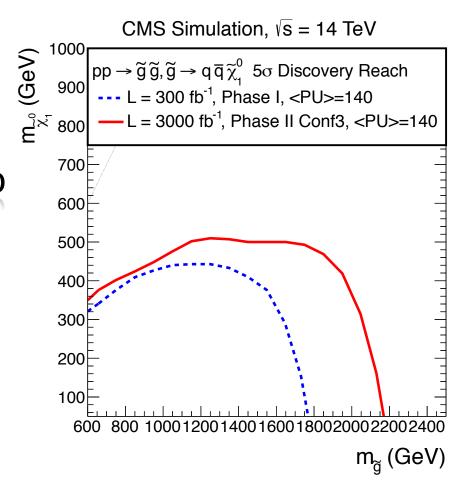


CMS-PAS-FTR-13-014 (ECFA 2013)

- The uncertainty on the total SM background is assumed to be 30% based on typical CMS analysis at 8 TeV.
- All plots are done with Phase I detector with (140 PU) and without pile-up interactions
- Benchmark signal:

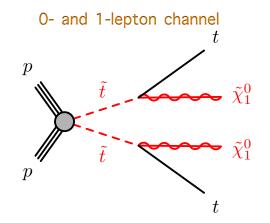
$$\widetilde{g} \rightarrow qq\widetilde{\chi}^0$$
 (2100, 100)

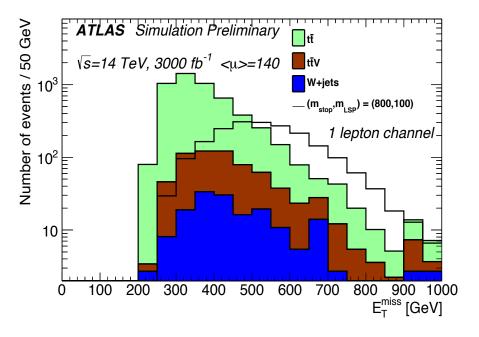
Pile-up interactions do not have a major impact in the search regions.

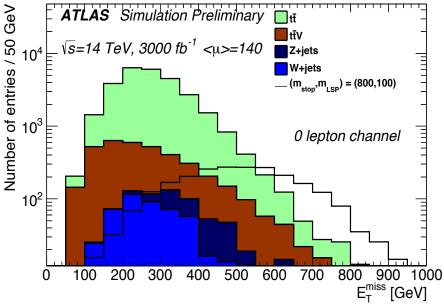


CMS-PAS-FTR-13-014 (ECFA 2013)

Figure 6 Gluino masses up to \sim **2.2 (1.8)**TeV and LSP masses up to \sim **500 (400)** GeV can be discovered at $\sqrt{s} = 14$ with an integrated luminosity of 3000 (300) fb⁻¹.

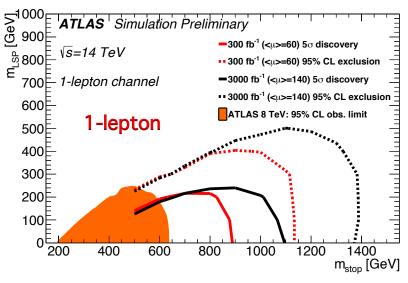


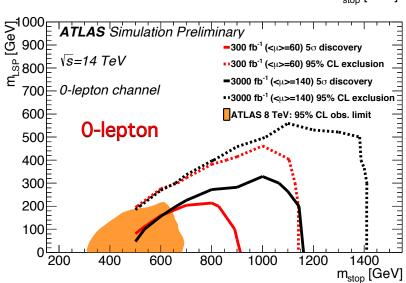

Third generation SUSY: direct stop searches

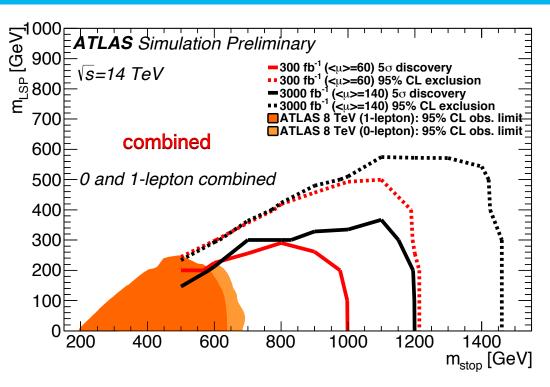

ATLAS-PHYS-PUB-2013-011 (ECFA 2013)

Signal topology of such events:

- A one lepton (e, mu) based selection
- An all-hadronic selection, vetoing on the presence of leptons (e, mu)
- HT, E_T^{Miss} , M_T , $\Delta \Phi$ (lep, ETmiss), $E_T^{miss}/\sqrt{H_T}$



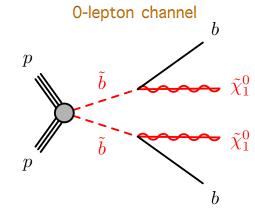


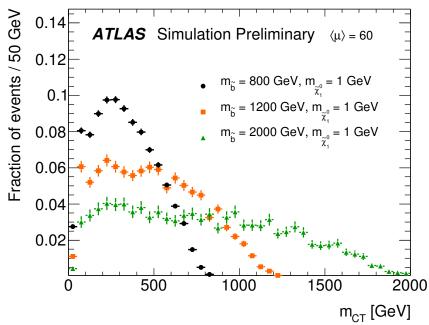


Third generation SUSY: direct stop searches

Discovery and exclusion potential for the 1-lepton and 0-lepton analyses. For LSP masses below ~ **300** GeV a stop discovery at 5σ would be possible with 3000 fb⁻¹ for stop masses up to ~ **1.2** TeV

Third generation SUSY: direct sbottom searches

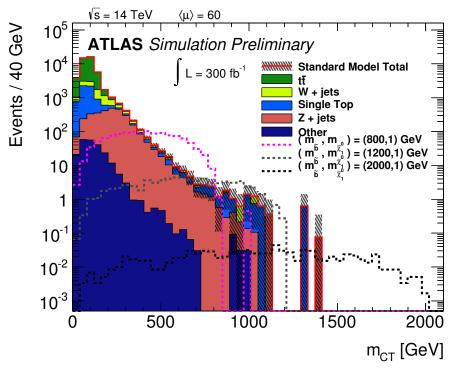

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014) NEW

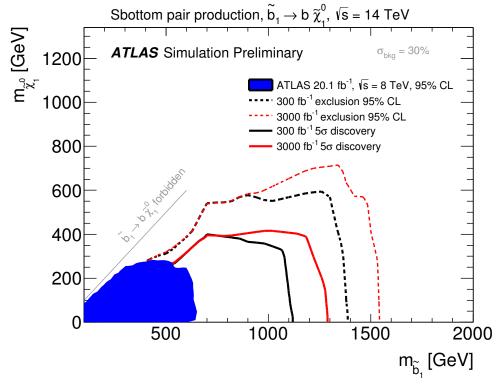

Signal topology of such events:

- An all-hadronic selection with b-tagged jets,
 vetoing on the presence of leptons (e, mu)
- E_T^{Miss} , M_{CT} , $\Delta \Phi$ (lep, E_T^{Miss}), m_{bb}
- The main variable used to discriminate the bottom squark pair signal from background is the boost corrected cotransverse mass:

$$m_{\text{CT}}^{\text{max}} = \frac{m^2(\tilde{b}) - m^2(\tilde{\chi}_1^0)}{m(\tilde{b})}.$$

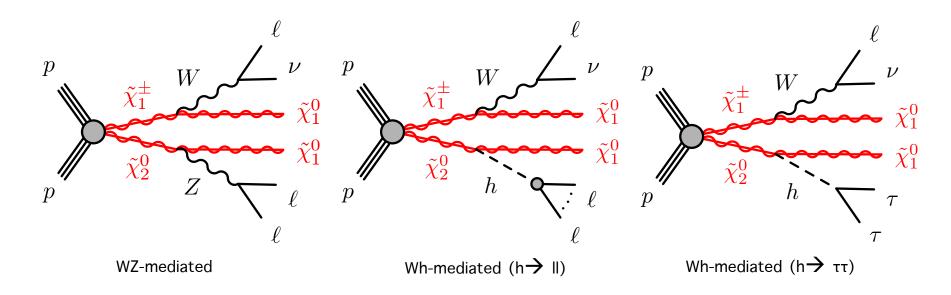
 $ightharpoonup m_{CT}$ is bounded by an analytical combination of particle masses.




Third generation SUSY: direct sbottom searches

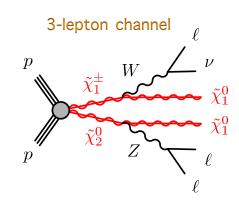
ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

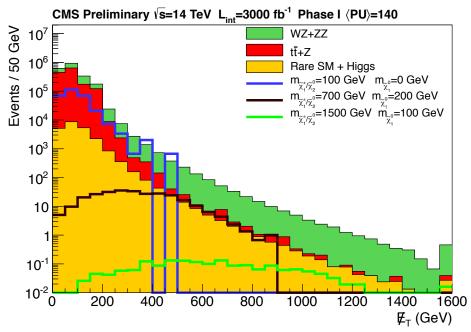
▶ Different m_{CT} values have been studied for different signal regions. The systematic uncertainty for the signal regions have been assumed to be 30%

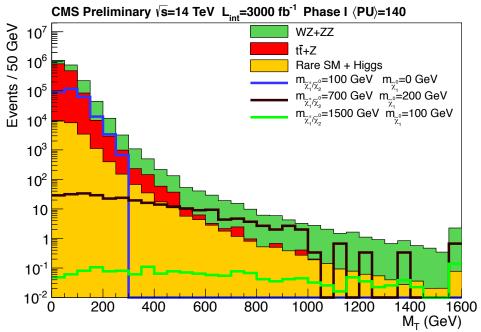

Bottom squarks with masses of ~ 1100 (1300) GeV can be discovered with 5σ significance with 300(3000) fb⁻¹.

Searches for direct electroweak production of SUSY particles are challenging at the LHC due to its <u>low production cross-section</u> and <u>low hadronic activities</u> in the event

Analyses strategies: In order to reduce the background as efficiently as possible, it is concentrated on the decays where all bosons (W, Z and h) decay leptonically, leading to a final state with three leptons.

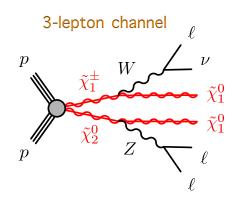


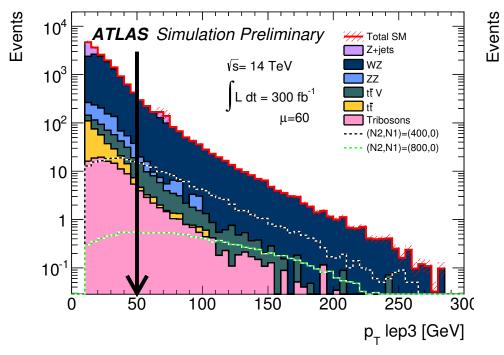


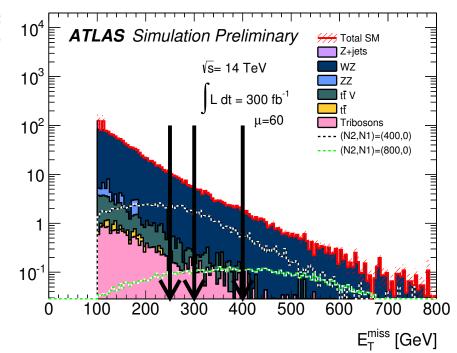

CMS-PAS-FTR-13-014 (ECFA 2013)

Signal topology of such events:

- Multi-leptons
- The presence of a pair of leptons with same flavor and opposite charge (OSSF)
- Select the pair closest to the Z-boson and the remaining lepton is assigned to the W decay

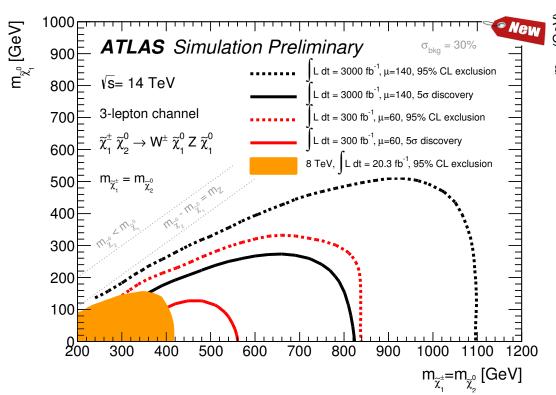


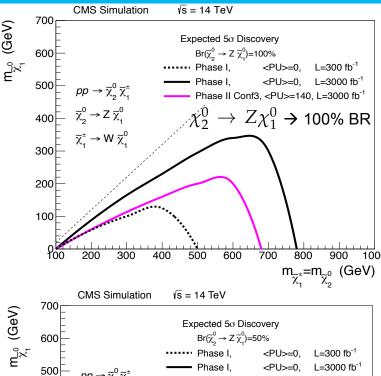


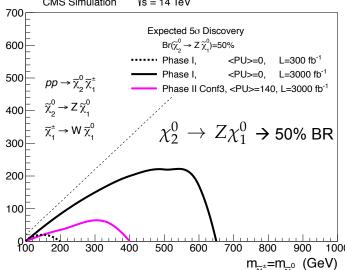

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

ATLAS analysis in the same production channel:

- Similar strategy based on OSSF pair in the event
- Events with b-tagged jets are vetoed
- M_{τ} reconstructed from the third lepton (from W)

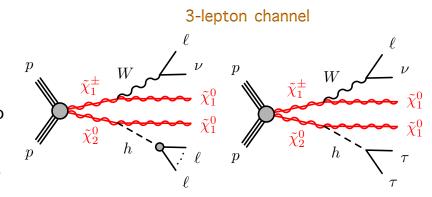


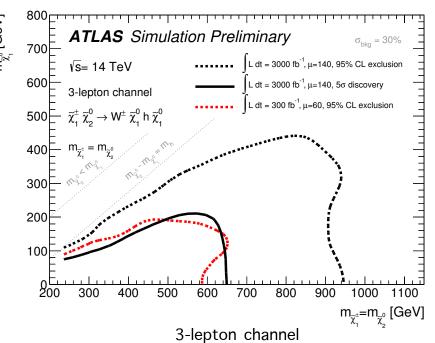


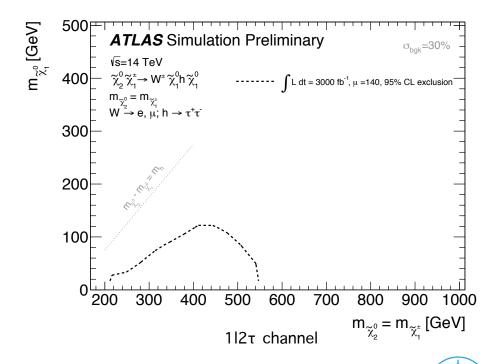


 5σ discovery reach for the direct production of charginos and neutralinos, that decay to 100% (and 50%) via W and Z boson.

Gain of ~300 GeV in chargino/neutralino mass discovery reach when going from 300 fb⁻¹ to 3000 fb⁻¹.



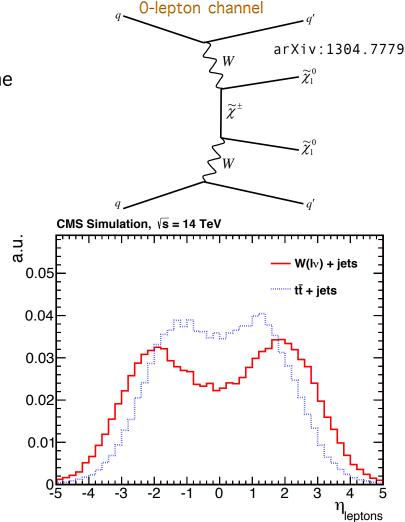



ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Signal topology of Wh-mediated channel:

- Multi-leptons: 3-leptons with and without taus
- The presence of a pair of OSSF leptons and veto them for WZ contribution
- Veto b-tagged jets for ttH avd ttV contributions

Vector Boson Fusion in SUSY

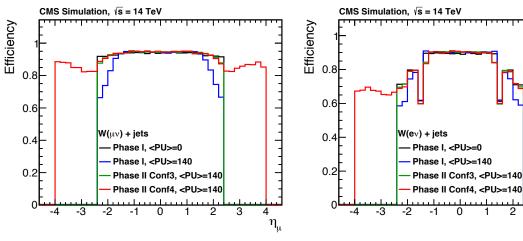

CMS-PAS-FTR-13-014 (ECFA 2013)

Signal topology of such events:

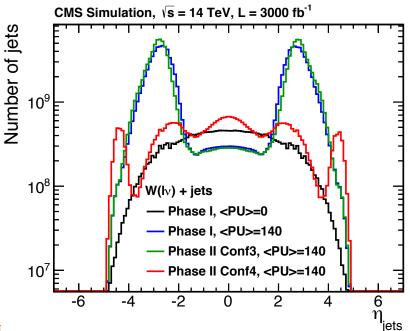
- Two jets with large di-jet invariant mass in the forward region in opposite hemispheres
- Large E_T^{Miss}, and no leptons
- small cross-section → challenging at HL-LHC

Selection of events based on:

- nJets=2 $p_T>30$ GeV, $l\eta l < 5$
- $\eta_1 \eta_2 > 4.2 \eta_1 + \eta_2 < 0$
- $p_{Tjet1} > 200 \text{ GeV}$, $p_{TJet2} > 100 \text{ GeV}$
- $M_{ii} > 1500 \text{ GeV}$
- Veto 3rd jet within jet1 and jet2
- Veto of b-tagged jet
- Veto of leptons, it is very crucial for the success of the analysis
- $E_T^{Miss} > 200 \text{ GeV}$

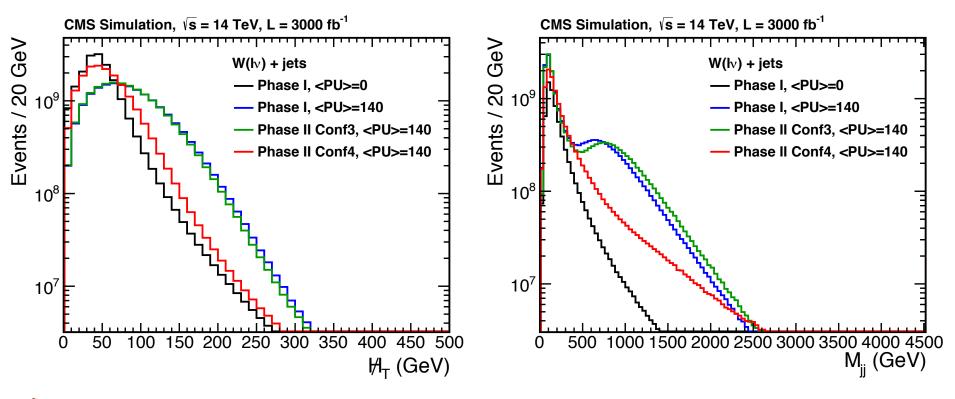


A significant amount of leptons fall outside the current geometrical acceptance of $|\eta| < 2.5$



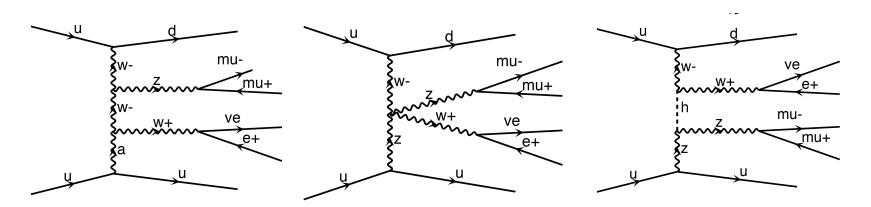
Vector Boson Fusion in SUSY

The lepton selection efficiency is crucial in order to achieve high efficiency for lepton vetoes to reduce W and tt backgrounds.


- The pileup jets outside the tracking coverage (CMS) are visible in the forward region outside the tracking coverage for 140 pileup scenarios.
- > HL-LHC \rightarrow the extended tracker coverage can reduce pileup jets substantially up to $|\eta| \sim 4$

Vector Boson Fusion in SUSY: Detector configuration

- Number of jets rises dramatically in forward region without tracking
 - → MHT and Mjj strongly affected
- Analyses depending on measurement of forward jets profit most from tracking up to $\ln l < 4$
- Background reduction by factor 3-10 expected



Vector Boson Scattering And Triboson Production

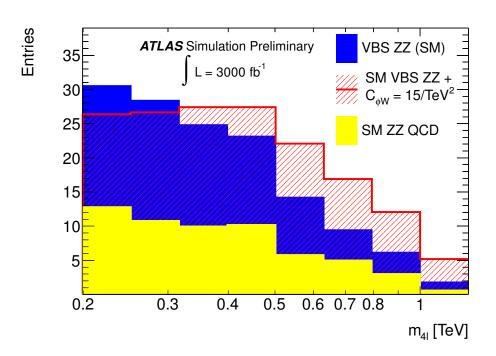
ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

Sensitivity to new physics can be achieved through heavy vector boson scattering via EWK processes.

A striking experimental feature of vector boson scattering is the presence of two high-pT jets in the forward regions, similar to those found in Higgs production via vector boson fusion.

- Vector boson scattering happen through
 - Double triple gauge coupling (TGC)
 - Quartic gauge coupling (QGC)
 - s-channel and t-channel Higgs scattering

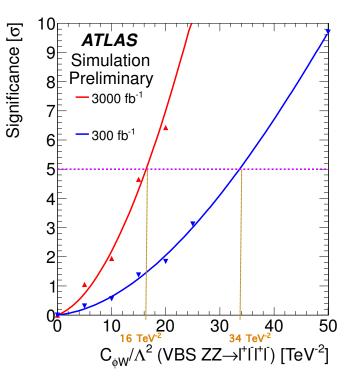
- Observation
 - Cross-section rises quickly with the energy
 - Exploring gauge-Higgs sector in detail



Vector Boson Scattering: Results for ZZ channel

ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

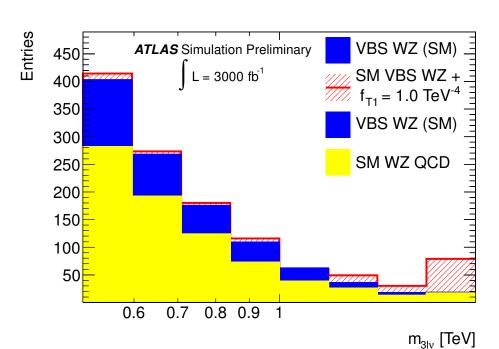
Signal topology of such events:


- Multi-leptons with two forward jets
- $M_{ij} > 1$ TeV for non-VBS diboson production
- small cross section but provides clean, reconstructible final state.

VBS $ZZ \rightarrow \ell\ell\ell\ell$

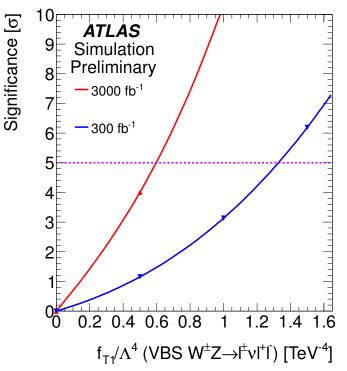
Direct interaction of the gauge boson fields via a field strength tensor

$$\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda^2} \text{Tr}(W^{\mu\nu} W_{\mu\nu}) \phi^{\dagger} \phi$$



Vector Boson Scattering: Results for WZ channel

ATLAS-PHYS-PUB-2013-006 (ECFA 2013)


Signal topology of such events:

- Multi-leptons with two forward jets
- Lepton from W should be identified
- Larger cross section but there is an unidentified lepton in the event.

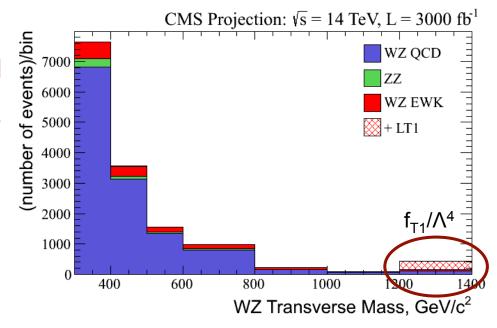
VBS $WZ \rightarrow \ell \nu \ell \ell$

$$\mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \text{Tr}[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta}] \times \text{Tr}[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu}]$$

Vector Boson Scattering: Results for WZ channel

CMS-FTR-13-006(ECFA 2013)

Signal topology of such events:


- Multi-leptons with two forward jets
- Lepton from W should be identified
- Larger cross section but there is an unidentified lepton in the event.

Significance	3σ	5σ
SM EWK scattering discovery	$75 { m fb}^{-1}$	$185 { m fb^{-1}}$
$rac{f_{T1}}{\Lambda^4}$ at 300 fb $^{-1}$	$0.8 { m TeV^{-4}}$	$1.0 { m TeV^{-4}}$
$\frac{f_{T_1}}{\Lambda^4}$ at 3000 fb ⁻¹	$0.45~{ m TeV^{-4}}$	$0.55 { m TeV^{-4}}$

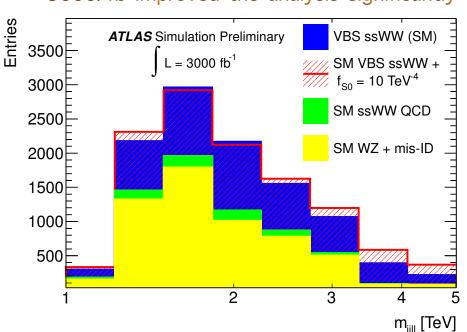
Observation of anomalous couplings of this type may indicate new physics in the electroweak symmetry breaking sector.

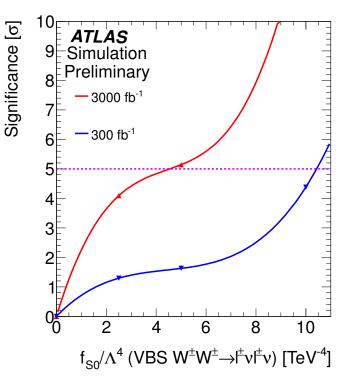
VBS
$$WZ \rightarrow \ell \nu \ell \ell$$

$$\mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \text{Tr}[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta}] \times \text{Tr}[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu}]$$

Vector Boson Scattering: Results for WW channel

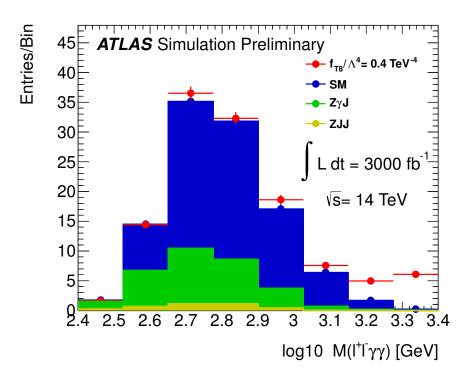
ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

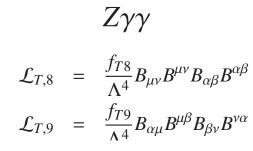

Signal topology of such events:

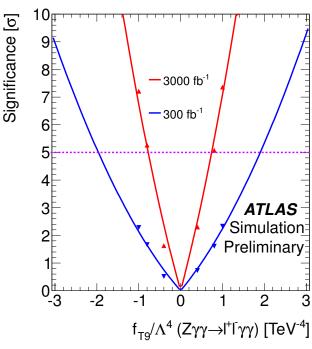

- Two same-sign leptons with two forward jets
- $M_{ii} > 1$ TeV for non-VBS diboson production
- Major backgrounds: WZjj, Wγ, WZ and WW-QCD

VBS
$$W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$$

$$\mathcal{L}_{S,0} = \frac{f_{S0}}{\Lambda^4} [(D_{\mu}\phi)^{\dagger} D_{\nu}\phi)] \times [(D^{\mu}\phi)^{\dagger} D^{\nu}\phi)]$$




Vector Boson Scattering: Triboson Scattering


ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

Signal topology of such events:

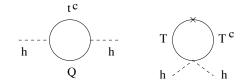
- Final state with di-lepton and di-photon
- Allows full reconstruction and calculate Zyy invariant mass

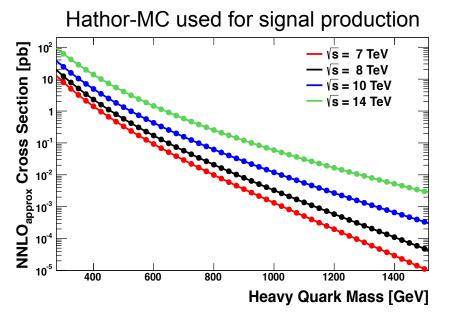
Vector Boson Scattering: Summary

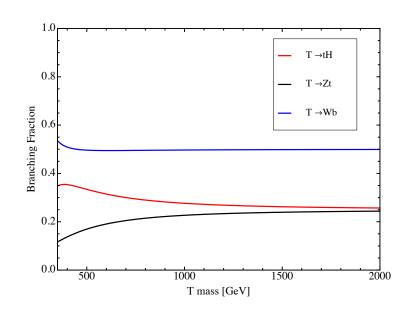
> HL-LHC enhances discovery range for new higher-dimension electroweak operators by more than a factor of two.

If Beyond the SM discovered in 300 fb⁻¹ dataset, then the coefficients on the new operators could be measured to 5% precision with 3000 fb⁻¹

Parameter	er dimension cha		Λ [ΤΑV]	300	fb^{-1}	$3000 \; \mathrm{fb^{-1}}$		
1 arameter	Tarameter unificision	channel	Λ_{UV} [TeV]	5σ	95% CL	5σ	95% CL	
$c_{\phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV^{-2}	20 TeV^{-2}	16 TeV ⁻²	9.3 TeV ⁻²	
f_{S0}/Λ^4	8	$W^{\pm}W^{\pm}$	2.0	$10 {\rm TeV^{-4}}$	6.8 TeV^{-4}	4.5 TeV^{-4}	0.8 TeV^{-4}	
f_{T1}/Λ^4	8	WZ	3.7	1.3 TeV^{-4}	0.7 TeV^{-4}	$0.6 {\rm TeV^{-4}}$	0.3 TeV^{-4}	
f_{T8}/Λ^4	8	$Z\gamma\gamma$	12	0.9 TeV^{-4}	0.5 TeV^{-4}	$0.4 \; {\rm TeV^{-4}}$	0.2 TeV^{-4}	
f_{T9}/Λ^4	8	$Z\gamma\gamma$	13	2.0TeV^{-4}	0.9 TeV^{-4}	0.7 TeV^{-4}	0.3 TeV^{-4}	

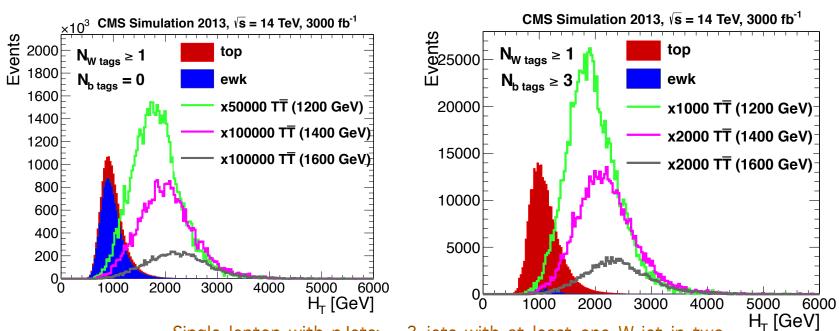

 Λ_{UV} : unitarity violation bound corresponding to the sensitivity with 3000 fb⁻¹

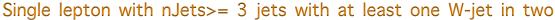

CMS-PAS-FTR-13-026 (ECFA 2013)


- Vector like quarks differ from SM quark since they have only vector-couplings to the W boson
 - Vector-like mass term does not violate gauge invariance without the need for a Yukawa coupling to the Higgs boson
 - Vector-like quarks are e.g. predicted by little Higgs models
 - Another natural solution to cancel the diverging contributions of top quark loops to the Higgs boson mass!

Analysis based on arXiv:0105239 and performed in

- Single Lepton
 - Multi-Lepton

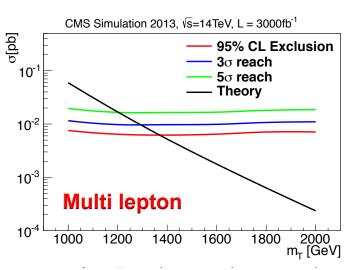


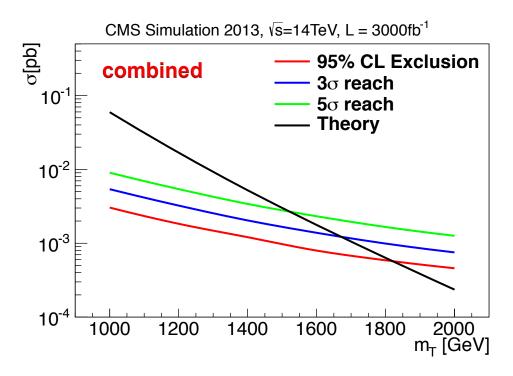


CMS-PAS-FTR-13-026 (ECFA 2013)

Signal topology of such events:

- Massive T quarks characterized by two to four vector bosons and at least two b-quarks.
- Single lepton \rightarrow one W boson decays leptonically and all the other bosons decay to hadrons (categories based on jet multiplicity and b-tagged jets)
- Multi Lepton → at least one Z boson or at least two W bosons decay leptonically (categories based on multiplicity and charged of leptons)

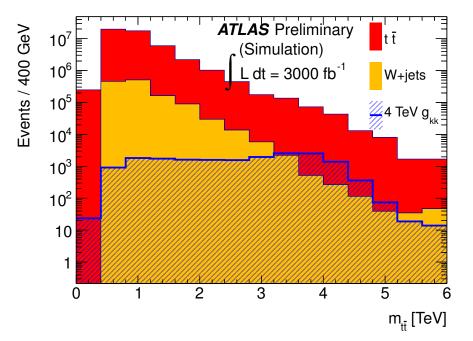


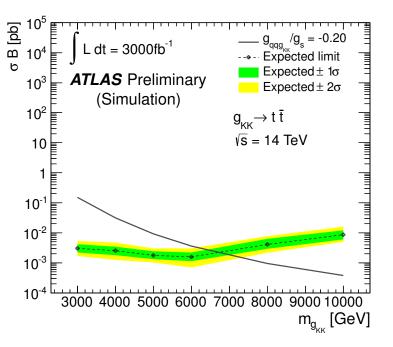


CMS-PAS-FTR-13-026 (ECFA 2013)

- The mass reach for the discovery of a heavy T quark at 3σ and 5σ level is expected to be **1.65** TeV and **1.48** TeV, respectively.
- A light Higgs at 126 GeV on composite Higgs model → light top partners with masses around few TeV are essential for a moderate level of tuning

Search for ttbar resonances


ATLAS-PHYS-PUB-2013-006 (ECFA 2013)


Signal topology of ttbar resonances:

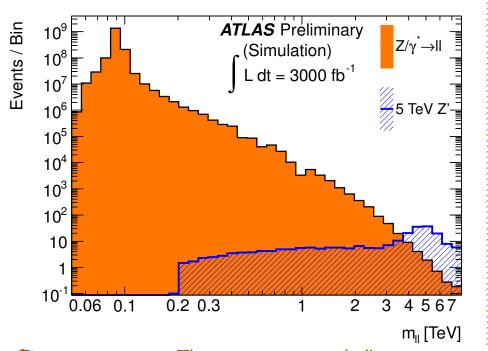
- Final state with di-lepton and single lepton
 - Leptonic ttbar: clean final state but more difficult reconstruction of ttbar invariant mass
 - Semi-leptonic ttbar: more complete reconstruction, but higher background

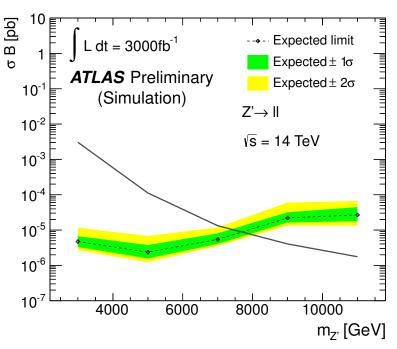
$g_{KK} \rightarrow$	$t\bar{t}$	and	$Z'_{ m topcolor}$	\rightarrow	$t\bar{t}$
----------------------	------------	-----	--------------------	---------------	------------

model	$300{\rm fb^{-1}}$	$1000{\rm fb^{-1}}$	$3000{\rm fb^{-1}}$
g_{KK}	4.3 (4.0)	5.6 (4.9)	6.7 (5.6)
$Z'_{ m topcolor}$	3.3 (1.8)	4.5 (2.6)	5.5 (3.2)

di-leptonic selection (similar results for single-lepton selection)

Search for di-lepton resonances


ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

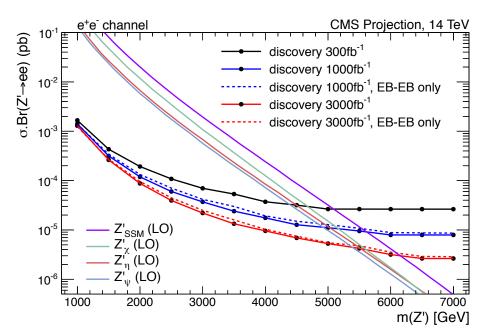

Signal topology of ttbar resonances:

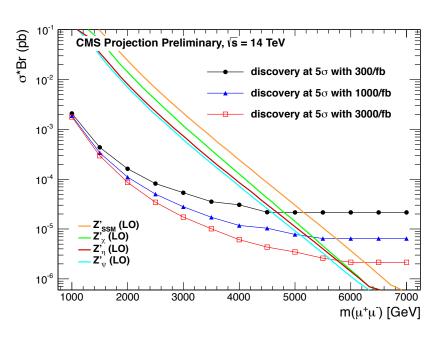
- Exactly two selected same flavor leptons
- ➤ Z`→mumu candidate events must have two opposite-sign muons

Mass reach for Z' dileptons can be enhanced by 20% with 3000 fb⁻¹

model	$300{\rm fb^{-1}}$	$1000{\rm fb^{-1}}$	$3000{\rm fb^{-1}}$
$Z'_{SSM} \rightarrow ee$	6.5	7.2	7.8
$Z'_{SSM} \to \mu\mu$	6.4	7.1	7.6

The reconstructed di-muon mass spectrum (similar results for di-electron)

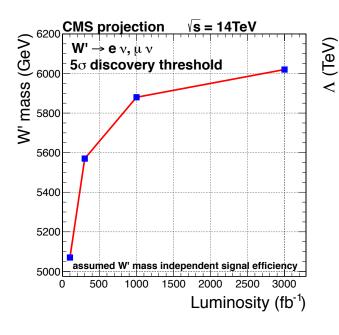


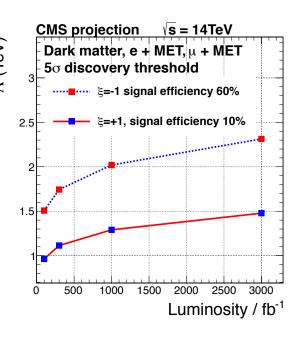

Search for Heavy Gauge bosons via di-leptons

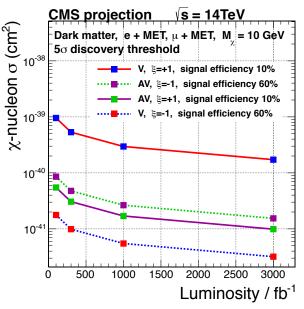
CMS-NOTE-13-002 (Snowmass 2013)

Signal topology of Z` searches:

- Di-lepton pairs electron (muon) $p_T > 35$ (45) GeV and $|\eta| < 2.5$ (2.4)
- Electron (muon) identification efficiency 88 (85)% taken from 8 TeV analysis
- Use ECAL barrel and endcap regions
- One electron must be found in barrel region
- Also studied is a case reduced acceptance due to degradation of the ECAL endcaps at HL-LHC

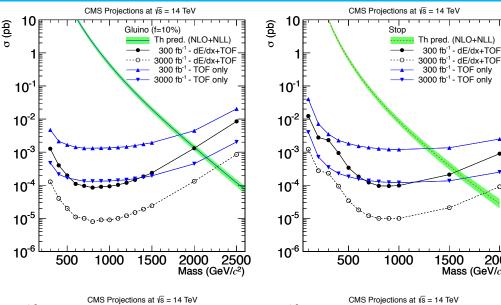


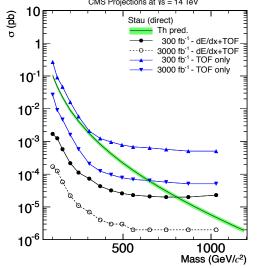

Search for W' and Dark Matter

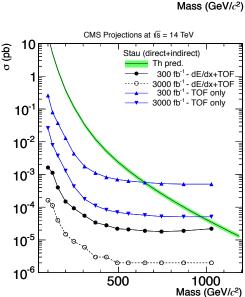

CMS-NOTE-13-002 (Snowmass 2013)

Signal topology of W' searches (SSM W' and dark matter effective theory):

- High p_⊤ lepton and missing energy
- W` considered to be heavy analog of W boson
- Dark matter model \rightarrow a pair of dark matter particles are produced in association with a lepton and a neutrino deriving from an intermediate SM W
- The signal efficiency 60 (10) % in the case of constructive (destructive) interference (8 TeV)




Search for Heavy Stable Charged Particles


CMS-NOTE-13-002 (Snowmass 2013)

Signal topology of the search

- Long lived gluinos, stops and staus
- various combinations of signatures in the inner tracker only, inner tracker and muon detector only
- long time-of-flight (TOF) to the outer muon system and anomalously large energy deposition in the inner tracker
- Background → instrumental effects
- dE/dx unchanged with the combination of long time-of-flight and highly ionizing signatures for HL-LHC
- the exclusion results rely entirely on theoretical cross section predictions made in the context of a given model (Split SUSY, GMSB and UED)

Th pred. (NLO+NLL)

300 fb⁻¹ - TOF only

1500

2000

Summary I

- Supersymmetry and naturalness:
 - O Gluinos mass reach enhanced by 400 GeV up to **2.4** TeV, for $χ_1^0$ with mass of up to **1.1** TeV.
 - Squarks mass reach shows strong dependency based on gluino mass assumptions
 - For LSP masses below ~ 300 GeV a stop discovery would be possible up to ~ 1.2 TeV
 - For LSP masses below ~ 300 GeV a sbottom discovery would be possible up to~ 1.3 TeV
 - Gain of ~300 GeV in chargino/neutralino mass discovery reach when going from 300 fb⁻¹ to 3000 fb⁻¹
- VBF searches, dark matter and forward tracking
 - depend crucially on forward tracking for pileup mitigation
- Vector Boson scattering
 - HL-LHC enhances discovery range for new higher-dimension electroweak operators by more than a factor of two.
- ☐ Vector Like charge 2/3 quark: search can probe masses up to 1.5 TeV
- Search for ttbar and dilepton resonances
 - gain up to 50% in mass reach for KK gluons or dilepton to several TeV
- Search for W` and heavy stable charged particles: signal efficiency and TOF importance are very critical for discovery

Summary II

- Key questions wait for answers?
 - Is the mass scale beyond the LHC reach?
 - Is the mass scale within LHC's reach, but final states are elusive?

- We must carefully analyze the implications of these two items in formulating detector concepts, and planning running conditions.
 - optimized to address sub-TeV and multi-TeV physics, respectively

Conclusion and Outlook

The results from ATLAS and CMS will continue to set the agenda across the energy frontier for the foreseeable future

- Run-I demonstrated the excellent performance and sensitivity over wide range of signatures but
 - in fact just started to test various BSM physics
- ✓ HL-LHC era improves significantly the current boundaries and open an important window to new physics prospects

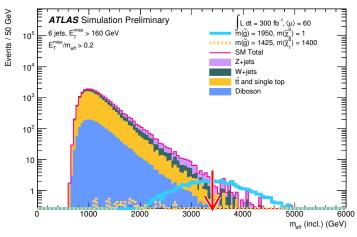
Benefits of HL-LHC

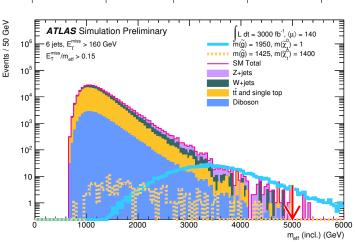
- Reduced statistical and systematic uncertainties in searches
 - Improvement of detector modeling and understanding of background processes
- Increased sensitivity of low cross section processes
- Probe a significant part of the interesting range of phase space for new physics prospects

Strongly produced SUSY: Gluino Searches

$S_{\mathrm{T}}^{\mathrm{lep}}$ region	sample	$N_{ m signal}$	$N_{ m control}$	R _{CS}
	t t	16.7 ± 4.5	227.4 ± 19.1	0.073095
	tīV	0.8 ± 0.2	$18.1 {\pm} 4.4$	0.047
$450 \le S_{\rm T}^{\rm lep} < 550 \rm GeV$	single top	0.0 ± 0.0	$1.2 {\pm} 0.5$	0.038
	V + jets	0.0 ± 0.0	$0.0 {\pm} 0.0$	0.000
	SM all	17.5±4.5	246.7 ± 19.6	0.071
	signal(2000,300)	6.3±1.0	3.3 ± 0.7	1.909
	tŧ	$4.4{\pm}1.4$	76.8 ± 9.8	0.057
	tŧV	$0.4 {\pm} 0.1$	3.7 ± 0.6	0.109
$550 \le S_{\rm T}^{\rm lep} < 650 \mathrm{GeV}$	single top	0.0 ± 0.0	$0.2 {\pm} 0.1$	0.211
1	V + jets	0.0 ± 0.0	1.6 ± 1.6	0.000
	SM all	4.8 ± 1.4	82.3±9.9	0.059
	signal(2000,300)	5.1±0.9	3.8 ± 0.8	1.360
	tŧ	0.8 ± 0.2	29.1±5.1	0.027
	tŧV	0.1 ± 0.0	$1.6 {\pm} 0.4$	0.055
$650 \le S_{\rm T}^{\rm lep} < 750 \mathrm{GeV}$	single top	0.0 ± 0.0	$0.3 {\pm} 0.1$	0.000
	V + jets	0.0 ± 0.0	$0.0 {\pm} 0.0$	0.000
	SM all	0.9 ± 0.2	31.1±5.1	0.028
	signal(2000,300)	7.3±1.1	3.9 ± 0.8	1.885
	tŧ	1.5±0.4	15.5±2.8	0.095
	tŧV	$0.2 {\pm} 0.1$	1.0 ± 0.3	0.162
$S_{\rm T}^{ m lep} \geq 750{ m GeV}$	single top	0.0 ± 0.0	$0.1 {\pm} 0.0$	0.050
	V + jets	0.0 ± 0.0	$2.5 {\pm} 1.6$	0.000
	SM all	1.6 ± 0.4	19.1±3.3	0.086
	signal(2000,300)	31.6±2.2	17.6 ± 1.6	1.803

The discovery range of gluinos can be enhanced 300 GeV for 300 fb⁻¹ to 3000 fb⁻¹ up to 2.2 TeV, for χ_1^0 with mass of up to 1.2 TeV

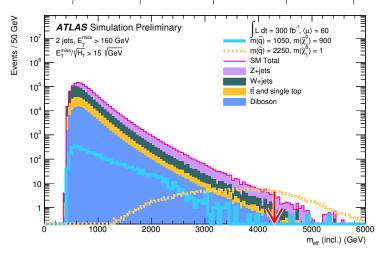



Strongly produced SUSY: Squark and gluino Searches

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Table 8: Yields for the main backgrounds and selected signal points simulated with $\langle \mu \rangle = 60$, normalised to $\mathcal{L} = 300 \text{ fb}^{-1}$. The signal samples are normalized for the scenario with a gluino mass of 4.5 TeV.

Region	SR2j1	SR2jm	SR3j	SR4jl	SR4jm	SR4jt	SR5j	SR6jl	SR6jm	SR6jt
W+jets	45.0 ± 3.5	2.7 ± 0.9	11.2 ± 1.8	11.8 ± 1.8	25.7 ± 2.7	113 ± 6	30.4 ± 2.9	8.5 ± 1.5	6.3 ± 1.3	3.6 ± 1.0
Z+jets	104.4 ± 3.1	16.9 ± 1.2	43.0 ± 2.0	48.5 ± 2.1	75.9 ± 2.6	111.1 ± 3.2	74.4 ± 2.6	20.7 ± 1.4	13.0 ± 1.1	10.0 ± 1.0
$t\bar{t}$	15.7 ± 1.8	1.6 ± 0.5	4.2 ± 0.8	5.1 ± 1.1	10.6 ± 1.5	45.9 ± 3.4	19.3 ± 2.2	5.2 ± 1.1	6.0 ± 1.2	3.4 ± 0.9
Diboson	18.4 ± 1.7	2.4 ± 0.5	6.5 ± 0.9	7.3 ± 1.0	12.5 ± 1.3	30.0 ± 2.4	13.8 ± 1.5	3.8 ± 0.8	2.8 ± 0.7	1.9 ± 0.5
Total background	183 ± 5	23.6 ± 1.7	64.9 ± 2.9	72.6 ± 3.1	125 ± 4	300 ± 8	138 ± 5	38.3 ± 2.5	28.1 ± 2.2	18.8 ± 1.7
$m_{\tilde{g}} = 1950 \text{GeV}$ $m_{\tilde{\chi}_1^0} = 1 \text{GeV}$	68.8 ± 0.6	12.48 ± 0.27	35.4 ± 0.5	18.41 ± 0.33	70.6 ± 0.7	102.4 ± 0.8	83.4 ± 0.7	25.6 ± 0.4	44.6 ± 0.5	35.4 ± 0.5
$m_{\tilde{g}} = 1425 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1400 \text{ GeV}$	12.6 ± 1.2	3.7 ± 0.6	8.5 ± 1.0	7.5 ± 0.9	8.1 ± 0.9	6.2 ± 0.8	4.7 ± 0.7	1.6 ± 0.4	1.05 ± 0.33	1.05 ± 0.33
$m_{\tilde{q}} = 1050 \text{GeV}$ $m_{\tilde{\chi}_1^0} = 900 \text{GeV}$	2.5 ± 1.1	1.5 ± 0.9	2.0 ± 1.0	3.5 ± 1.3	6.4 ± 1.8	4.0 ± 1.4	7.4 ± 1.9	3.5 ± 1.3	1.5 ± 0.9	1.5 ± 0.9
$m_{\tilde{q}} = 2250 \text{GeV}$ $m_{\tilde{\chi}_1^0} = 1 \text{GeV}$	141.7 ± 0.9	60.1 ± 0.6	82.1 ± 0.7	39.2 ± 0.5	59.3 ± 0.6	58.9 ± 0.6	28.4 ± 0.4	7.84 ± 0.21	8.00 ± 0.21	7.57 ± 0.20


Strongly produced SUSY: Squark and gluino Searches

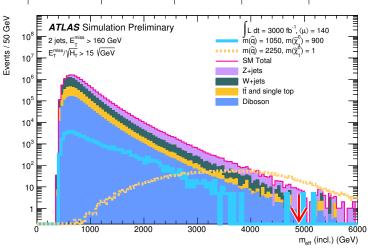

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Table 9: Yields for the main backgrounds and selected signal points simulated with $\langle \mu \rangle = 140$, normalised to $\mathcal{L} = 3000 \text{ fb}^{-1}$. The signal samples

samples are normalized for the scenario with a gluino mass of $4.5\,\text{TeV}$.

Region	SR2jl	SR2jm	SR3j	SR4jl	SR4jm	SR4jt	SR5j	SR6jl	SR6jm	SR6jt
W+jets	8 ± 5	5 ± 4	38 ± 10	8 ± 5	14 ± 6	101 ± 17	14 ± 6	25 ± 8	11 ± 5	0.00 ± 0.00
Z+jets	51 ± 7	51 ± 7	185 ± 13	78 ± 8	127 ± 11	125 ± 11	65 ± 8	85 ± 9	29 ± 5	3.6 ± 1.8
$t\bar{t}$	9 ± 4	9 ± 4	20 ± 5	7.0 ± 3.1	18 ± 6	37 ± 9	11 ± 4	17 ± 5	3.5 ± 2.1	1.4 ± 1.4
Diboson	7.6 ± 3.1	7.2 ± 2.9	10.4 ± 3.4	18 ± 5	29 ± 7	9.9 ± 3.5	14 ± 4	4.8 ± 2.6	0.6 ± 0.8	
Total background	76 ± 10	72 ± 9	269 ± 18	104 ± 11	176 ± 14	292 ± 23	99 ± 11	141 ± 14	48 ± 8	5.6 ± 2.4
$m_{\tilde{g}} = 1950 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1 \text{ GeV}$	55.8 ± 1.8	43.4 ± 1.6	163.9 ± 3.1	75.2 ± 2.1	191.0 ± 3.4	159.1 ± 3.1	152.7 ± 3.0	257 ± 4	73.4 ± 2.1	36.0 ± 1.5
$m_{\tilde{g}} = 1425 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1400 \text{ GeV}$	10.5 ± 3.3	15 ± 4	48 ± 7	19 ± 4	23 ± 5	8.4 ± 3.0	14 ± 4	7.4 ± 2.8	5.3 ± 2.4	0.00 ± 0.00
$m_{\tilde{q}} = 1050 \text{GeV}$ $m_{\tilde{\chi}_1^0} = 900 \text{GeV}$	5 ± 5	10 ± 7	15 ± 9	10 ± 7	15 ± 9	15 ± 9	10 ± 7	25 ± 11	5 ± 5	5 ± 5
$m_{\tilde{q}} = 2250 \text{ GeV}$ $m_{\tilde{x}_{1}^{0}} = 1 \text{ GeV}$	186 ± 3	208.2 ± 3.4	558 ± 6	254 ± 4	320 ± 4	182.6 ± 3.2	136.4 ± 2.7	75.2 ± 2.0	50.9 ± 1.7	13.6 ± 0.9

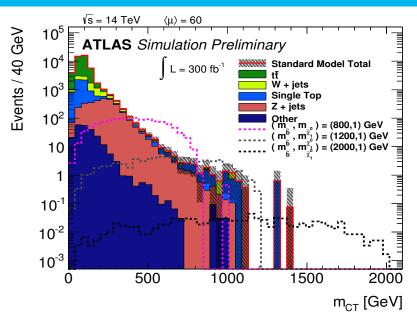
Third generation SUSY: direct stop searches

ATLAS-PHYS-PUB-2013-011 (ECFA 2013)

	(800,100)	(1100,100)
$t\overline{t}$	257±25	6.6±3.8
$t\bar{t}+W$	15 ± 2	0.9 ± 0.5
$t\bar{t}$ + Z	71 ± 7	8.5 ± 2.3
W+jets	41±11	5.4 ± 3.8
Total bkg	385±28	21.4±5.9
Signal	880±18	55.7±1.5

	(800,100)	(1100,100)
$t ar{t}$	69±13	5.7±3.4
$t\bar{t}+W$	5±1	0.8 ± 0.6
$t\bar{t}$ + Z	38 ± 5	3.9 ± 1.5
W+jets	3 ± 3	negligible
Z+jets	14±4	1.8 ± 1.3
Total bkg	129±15	12.2±3.9
Signal	457±13	46.0±1.4

1-lepton channel


0-lepton channel

Third generation SUSY: direct sbottom searches

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)						
Selection	SRx					
Lepton veto	No e/μ with $p_T > 7(6)$ GeV for $e(\mu)$					
$E_{ m T}^{ m miss}$	> 150 GeV					
Leading jet $p_T(j_1)$	(j_1) > 130 GeV					
Third jet $p_{\rm T}(j_3)$	veto if > 50 GeV					
<i>b</i> -tagging	leading 2 jets					
	$(p_{\rm T} > 50 \text{ GeV}, \eta < 2.5)$					
$\Delta\phi_{ m min}$	> 0.4					
$E_{\rm T}^{\rm miss}/m_{\rm eff}(2)$	$E_{\rm T}^{\rm miss}/m_{\rm eff}(2) > 0.25$					
m_{CT}	> x GeV					
m_{bb}	> 200 GeV					

•						
	SRA300	SRA350	SRA450	SRA550	SRA650	SRA750
$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (1000, 1)$	216 ± 4	200 ± 4	161 ± 4	118.5 ± 3.2	78.6 ± 2.6	44.0 ± 1.9
$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (1400, 1)$	19.3 ± 0.9	18.4 ± 0.9	16.8 ± 0.8	14.9 ± 0.8	12.8 ± 0.7	10.2 ± 0.6
$(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (1600, 1)$	6.04 ± 0.28	5.84 ± 0.28	5.55 ± 0.27	5.19 ± 0.26	4.57 ± 0.25	3.78 ± 0.22
$t ar{t}$	32.6 ± 3.0	14.8 ± 2.0	4.3 ± 1.1	1.5 ± 0.7	0.6 ± 0.4	0.29 ± 0.29
single top	146 ± 12	83 ± 8	41 ± 6	25 ± 5	12.7 ± 3.2	8.9 ± 2.5
Z+jets	508 ± 8	249 ± 5	70.5 ± 2.7	23.1 ± 1.5	9.1 ± 1.0	4.1 ± 0.7
W+jets	92 ± 5	44 ± 4	9.3 ± 1.7	2.9 ± 0.9	1.6 ± 0.8	0.9 ± 0.6
Other	5.4 ± 0.5	3.3 ± 0.4	1.59 ± 0.28	0.50 ± 0.16	0.18 ± 0.09	0.15 ± 0.08

Electroweak production of SUSY particles

CMS-PAS-FTR-13-014 (ECFA 2013)

Table 2: Standard model background predictions for the different scenarios at $3000 \, \text{fb}^{-1}$.

		Phase I	Phase I	Phase II Conf3
Selection in GeV		$\langle PU \rangle = 0$	$\langle PU \rangle = 140$	$\langle PU \rangle = 140$
		yield \pm uncert.	yield \pm uncert.	yield \pm uncert.
$0 < M_{\rm T} < 120$	$0 < E_T < 60$	$(7.3 \pm 0.7) \times 10^5$	$(8.0 \pm 1.2) \times 10^5$	$(9.3 \pm 1.2) \times 10^5$
$0 < M_{\rm T} < 120$	$60 < E_T < 120$	$(1.8 \pm 0.2) \times 10^5$	$(8.4 \pm 1.2) \times 10^5$	$9.3 \pm 1.1 \times 10^5$
$0 < M_{\rm T} < 120$	$120 < \cancel{E}_{\mathrm{T}} < \infty$	$(5.6 \pm 0.8) \times 10^4$	$(3.3 \pm 0.7) \times 10^5$	$(3.3 \pm 0.7) \times 10^5$
$120 < M_{\rm T} < 200$	$0 < E_T < 120$	$(7.9 \pm 0.8) \times 10^3$	$(7.7 \pm 0.7) \times 10^4$	$ (8.2 \pm 0.7) \times 10^4 $
$120 < M_{\rm T} < 200$	$120 < E_T < 200$	$(1.2 \pm 0.2) \times 10^3$	$(4.0 \pm 0.7) \times 10^4$	$(4.3 \pm 0.7) \times 10^4$
$120 < M_{\rm T} < 200$	$200 < \cancel{E}_{\mathrm{T}} < \infty$	359 ± 84	$(5.7 \pm 2.3) \times 10^3$	$(4.8 \pm 2.1) \times 10^3$
$200 < M_{\rm T} < 400$	$0 < E_T < 200$	$(2.3 \pm 0.2) \times 10^3$	$(1.5 \pm 0.2) \times 10^4$	$(1.5 \pm 0.2) \times 10^4$
$200 < M_{\rm T} < 400$	$200 < E_T < 400$	303 ± 52	$(1.6 \pm 0.5) \times 10^3$	$1.4 \pm 0.5 \times 10^3$
$200 < M_{\rm T} < 400$	$400 < E_T < \infty$	24 ± 4	69 ± 35	39 ± 12
$400 < M_{\rm T} < 700$	$0 < E_T < 300$	249 ± 24	395 ± 58	390 ± 42
$400 < M_{\rm T} < 700$	$300 < E_T < 700$	67 ± 13	95 ± 19	100 ± 24
$400 < M_{\rm T} < 700$	$700 < \cancel{E}_{\mathrm{T}} < \infty$	1.1 ± 0.4	1.3 ± 0.5	1.4 ± 0.4
$700 < M_{\mathrm{T}} < \infty$	$0 < E_T < 400$	30 ± 3	27 ± 3	27 ± 3
$700 < M_{\mathrm{T}} < \infty$	$400 < E_T < 900$	32 ± 5	31 ± 5	30 ± 5
$700 < M_{\mathrm{T}} < \infty$	$900 < \cancel{E}_{\mathrm{T}} < \infty$	1.4 ± 0.4	1.5 ± 0.5	1.2 ± 0.4

Electroweak production of SUSY particles

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Selection	SRA	SRB	SRC	SRD		
$m_{ m SFOS}[{ m GeV}]$		81.2-	101.2			
# b-tagged jets		()			
lepton p_T (1,2,3)[GeV]	> 50					
$E_{ m T}^{ m miss} [{ m GeV}]$	> 250	> 300	> 400	> 500		
$m_{\mathrm{T}} \; [\mathrm{GeV}]$	> 150	> 200	> 200	> 200		
$\langle \mu \rangle = 60,300 \text{fb}^{-1} \text{scenario}$	yes	yes	yes	_		
$\langle \mu \rangle = 140,3000\mathrm{fb^{-1}}$ scenario	yes	yes	yes	yes		

Table 2: Expected numbers of events for SM background and four SUSY scenarios for the WZ-mediated signal regions. Uncertainties are statistical only.

Sample	SRA	SRB	SRC	SRA	SRB	SRC	SRD
Scenario		$800 \text{fb}^{-1}, \mu = 60$		$3000 \mathrm{fb^{-1}}, \mu = 140$			
WZ	9.60±0.32	4.59±0.22	1.91±0.14	200±5	59.4±2.5	22.0±1.5	8.3 ± 1.0
ZZ	0	0	0	0	0	0	0
VVV	2.11±0.18	1.07 ± 0.13	0.44 ± 0.08	24.3±1.9	12.1±1.4	5.4 ± 0.8	2.0 ± 0.5
Wh	0	0	0	0	0	0	0
$t ar{t} V$	0.67±0.19	0.23 ± 0.12	0	14.4±2.8	4.2 ± 1.6	0.31 ± 0.31	0
$tar{t}$	0	0	0	0	0	0	0
Σ ΜС	12.4±0.4	5.89±0.28	2.35±0.16	239±6	75.6±3.3	27.7±1.8	10.3±1.1
WZ-mediated							
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (400,0) \text{ GeV}$	38.5±0.6	20.1 ± 0.5	5.47 ± 0.23	407±6	224±5	67.9±2.6	19.7±1.4
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (600,0) \text{ GeV}$	19.40±0.20	14.69±0.17	7.76 ± 0.12	194.8±2.0	148.9±1.7	81.6±1.3	33.5 ± 0.8
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (800,0) \text{ GeV}$	6.97±0.06	5.90±0.06	4.21 ± 0.05	69.6±0.6	59.1±0.6	42.4±0.5	25.2 ± 0.4
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (1000,0) \text{ GeV}$	2.31±0.02	2.05±0.02	1.64±0.02	22.94±0.19	20.42±0.18	16.36±0.16	11.55±0.14

Electroweak production of SUSY particles

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Selection	SRE	SRF	SRG	SRH		
SFOS pair		ve	eto			
# b-tagged jets		()			
$E_{ m T}^{ m miss}~{ m [GeV]}$		> 1	100			
$m_{OS}^{{ m m}in\Delta R}~{ m [GeV]}$	< 75					
$m_{\mathrm{T}}(\ell_1)$ [GeV]	> 200	> 200	> 300	> 400		
$m_{\mathrm{T}}(\ell_2)$ [GeV]	> 100	> 150	> 150	> 150		
$m_{\rm T}(\ell_3)$ [GeV]	> 100	> 100	> 100	> 100		
$\langle \mu \rangle = 60,300\mathrm{fb^{-1}}$ scenario	yes	yes	yes			
$\langle \mu \rangle = 140,3000\mathrm{fb^{-1}}$ scenario	yes	yes	yes	yes		

Table 5: Expected numbers of events for SM background and four SUSY scenarios for the Wh-mediated 3ℓ signal regions. Uncertainties are statistical only.

Sample	SRE	SRF	SRG	SRE	SRF	SRG	SRH
Scenario	ĺ ,	$300 \text{fb}^{-1}, \mu = 60$	0		3000 fb	$\mu^{-1}, \mu = 140$	
WZ	0.28±0.06	0.14±0.04	0.05 ± 0.02	6.2±0.8	2.9±0.6	0.76±0.29	0.43±0.22
ZZ	0	0	0	0	0	0	0
VVV	2.05±0.33	1.04 ± 0.24	0.11 ± 0.08	34±4	17.5 ± 3.1	1.3 ± 0.8	0.8 ± 0.6
Wh	0.25±0.15	0.08 ± 0.08	0	10.1±2.9	2.5 ± 1.5	0.8 ± 0.8	0
$t \overline{t} V$	0.68±0.15	0.21 ± 0.08	0.07 ± 0.05	9.6±1.8	4.1 ± 1.3	1.1 ± 0.6	0.4 ± 0.4
$t ar{t}$	3.7±0.5	0.95 ± 0.27	0	121±10	36±5	3.9 ± 1.8	0
ΣΜС	7.0±0.7	2.4±0.4	0.23±0.10	181±11	63±6	7.9±2.2	1.6±0.7
Wh-mediated							
$m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (200,0) \text{ GeV}$	13.2±2.7	7.7 ± 2.1	2.2 ± 1.1	181±31	99±23	27±12	0
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (300,0) \text{ GeV}$	15.1±1.5	10.4 ± 1.2	3.4 ± 0.7	166±16	121±13	46±8	13±4
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (500,0) \text{ GeV}$	5.4±0.4	4.58 ± 0.33	3.19 ± 0.28	57±4	46.1±3.4	31.9±2.8	20.5 ± 2.2
$m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (700,0) \text{ GeV}$	1.75±0.10	1.55±0.10	1.27±0.09	18.1±1.1	15.9±1.0	12.8±0.9	9.1±0.8

CMS-PAS-FTR-13-026 (ECFA 2013)

Mass		e3 +	<i>μ</i> 3			e4 +	- μ4		
(GeV)	0b	1b	2b	≥3b	0b	1b	2b	≥3b	
Signal Event Yiel	Signal Event Yields								
1000	3988	8767	8358	3079	1850	4236	4291	1383	
1200	1110	2578	2414	865	523	1313	1288	408	
1400	336	808	<i>7</i> 51	258	179	458	449	136	
1600	109	267	241	80	67	1 <i>77</i>	168	52	
1800	36	91	81	27	26	71	66	19	
2000	12	32	28	9	10	29	27	8	
Background Even	t Yields $ imes 10$	0^{5}	'	•	•	'	'		
$tar{t}$	31.3 ± 6.2	$ 24.2 \pm 4.8 $	17.3 ± 3.4	2.5 ± 0.5	37.4 ± 7.4	$ 21.3\pm4.2 $	15.6 ± 3.1	2.1 ± 0.4	
Electroweak	135.9 ± 27.1	8.7±1.7	1.2 ± 0.2	0.08 ± 0.01	331.5 ± 66.3	16.7 ± 3.3	1.9 ± 0.4	0.10 ± 0.02	
Total Background	167.3 ± 33.4	33.0 ± 6.6	18.4 ± 3.7	2.6 ± 0.5	368.9 ± 73.8	38.0 ± 7.6	17.5 ± 3.5	2.2±0.4	

Mass (GeV)	OS23	OS5+	SS	$\geq 3\ell$						
Signal Event Yields										
1000	505	1050	467	431						
1200	195	303	134	134						
1400	69	93	38	40						
1600	26	29	11	12						
1800	10	10	4	4						
2000	4	3	1	1						
Background Event Yields										
$t\bar{t}$ +non-prompt	1757 ± 352	17922 ± 3585	2428 ± 486	170±34						
Electroweak	532 ± 106	2908 ± 581	2428 ± 486	397±79						
Total Background	2289 ± 458	20830 ± 4166	4857 ± 971	568 ± 113						

CMS Detector Upgrade

At 13-14 TeV:

- \bullet possible discovery with 300 fb⁻¹
- extension of discovery reach at HL-LHC
 - $ightharpoonup \mathcal{L}$ matters for EWK processes
 - gain from improved detector
- and further study in case of discovery

 $\begin{bmatrix} 14\text{TeV} \end{bmatrix}$ $\mathcal{L} \sim 300 \text{ fb}^{-1}$ $\langle PU \rangle \approx 50$

High-luminosity LHC

 $\mathcal{L} \sim 3000~\mathrm{fb}^{-1}$ $\langle PU \rangle \approx 140$

13-14TeV

 $\mathcal{L} \sim 100 \text{ fb}^{-1}$ $\langle PU \rangle \approx 25$

LS1

LS2

Phase 1:

- Pixel
- HCAL
- L1 trigger

Phase 2 Upgrade:

- tracker replacement
- tracker up to $|\eta| < 4$
- forward calorimetry
- ullet muon up to $|\eta| < 2.4$
- further trigger upgrade

Phase 0:

detector consolidation

Courtesy L. Schutzka

8TeV

