The Golden Age of Transiting Exoplanets

The Legacy of the CoRoT and Kepler Space Missions

Artie P. Hatzes *Thüringer Landessternwarte Tautenburg*

Why search for Exoplanets?

To answer these questions

- How do planets form?
- How frequent is the process?
- How unique is our Solar System?
- What are the conditions for life?
- Is there other intelligent life in our Galaxy?

The so far most successful methods:

Radial velocity method

Transit method

Planet Phases and Secondary Eclipse

Spitzer Measurements of Radiated Light at 8 µm of HD 189733

Why observe from space (1)?

Why observe from space (2)? CoRoT-2b

In spite of activity noise one can get a beautiful transit and RV curve:

- Period = 1.7 d
- Radius = 1.46 R_{Jupiter}

- Mass = $3.3 M_{Jupiter}$
- Density = 1.3 gm cm^{-3}

The Exoplanet Discovery Space

A Tale of Two Transit Space Telescopes: The Golden Era of Transit Searches

The CoRoT Mission (CNES) Convection Rotation and Planetary Transits

- Goals: exoplanets + astroseismology
- Polar Earth Orbit
- 27 cm Schmidt Telescope
- 4 CCD detectors
- 2.8° x 2.8° field-of-view
- Max. 150 days observing 12000 stars
- Duration 6 years
- Launched: 27th December 2006

The Kepler Mission (NASA)

- Goal: detect Earth-sized planet in HZ
- Orbit: Earth trailing
- 0.95 m aperture Schmidt telescope
- 42 CCD detectors
- 105 square degree field of view
- Stare at one star field of 100,000 stars
- Duration: 4.5 years
- Launched: March 6, 2009

CoRoT's Exoplanet Candidates

INCLUDES CLOSE TO 3000 DETECTIONS,

ALSO EBS

CREDIT: J.M. ALMENARA

Follow-up facilities: if it collects photons, we will use it!

Confirmed CoRoT Planets

Credits: Sz. Csizmadia

CoRoT-9b: Longest period planet discovered via transit method

CoRoT-9b:

- $R = 1.05 R_{J}$
- P = 95.274 d
- a = 0.41 AU
- e = 0.11
- m = 0.84 M_J
- T_{eff} = 250 400 K
- Moderate temperature

Are Close-in Jupiters inflated because they are hot?

Demory and Seager 2011

Modified From H. Rauer

Close-in Rocky Planets

The first transiting "Rocky" Planet CoRoT-7b

The Velocity variation of CoRoT 7b after removing the activity variations CoRoT-7b

moor

IUSTRALL

CoRoT-7b

CoRoT-7c

CoRoT-7d

Mass = $16.7 M_{E}$

Kepler-10b the twin of CoRoT-7b

Orbital Period: 0.84 d

Radius: 1.4 R_{Earth}

Mass = $4.6 M_{Earth}$

The Inner Structure of Kepler-10b and CoRoT-7b

CoRoT-7b and Kepler 10b likely iron enriched Wagner et al. 2012

The Earth-mass Planet Kepler-78b

12

Transit detection: Sanchis-Ojeda et al 2013 Keck Velocity Measurements: Howard et al. 2013 HARPS-N Velocity Measurements: Pepe et al. 2013

Orbital Period = 8.5 hours! Orbital distance = 0.01 AU (2.1 Stellar Radii)

Diversity in Density

Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities

Joshua A. Carter^{1+*}, Eric Agol^{2+*}, William J. Chaplin³,

Star	
Mass, M_{\star} (M_{\odot})	1.071 ± 0.043
Radius, R_{\star} (R_{\odot})	1.626 ± 0.019
Mean Density, ρ_{\star} (g cm ⁻³)	0.3508 ± 0.0056
Stellar Effective Temperature, $T_{\rm eff}$ (K)	5911 ± 66
Planet b	
Time of Transit, T_b (BJD)	$2454960.9753^{+0.0055}_{-0.0058}$
Period, P_b (day)	$13.83989^{+0.00082}_{-0.00060}$
Orbital Semimajor Axis, a_b (AU)	0.1153 ± 0.0015
Mass, $M_b (M_{\oplus})$	$4.45_{-0.27}^{+0.33}$
Radius, $R_b (R_{\oplus})$	1.486 ± 0.035
Mean Density, ρ_b (g cm ⁻³)	$7.46_{-0.59}^{+0.74}$
Equilibrium Temperature, T _{eq,b} (K)	978 ± 11
Planet c	
Time of Transit, T_c (BJD)	$2454955.9132^{+0.0011}_{-0.0010}$
Period, P_c (day)	$16.23855\substack{+0.00038\\-0.00054}$
Orbital Semimajor Axis, a_c (AU)	0.1283 ± 0.0016
Mass, $M_c (M_{\oplus})$	$8.08\substack{+0.60\\-0.46}$
Radius, $R_c (R_{\oplus})$	3.679 ± 0.054
Mean Density, ρ_c (g cm ⁻³)	$0.89^{+0.07}_{-0.05}$
Equilibrium Temperature, $T_{\rm eq,c}$ (K)	928 ± 10

A diversity in densities

- a₁ = 0.1153 AU, a₂ =0.1283 AU, a difference of 10%
- $m_1 = 4.4 M_E$, $m_2 = 8.1 M_E$, $\sim 2x$
- $\rho_1 = 7.46 \text{ gm cm}^{-3}$ $\rho_2 = 0.89, \sim 8x$
- In situ formation: How can two planets formed in the same part of the protoplanetary disk have such different densities?
- Migration?

Planetary Systems

Kepler-11: A transiting 6 Planet System

A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack J. Lissauer¹, Daniel C. Fabrycky², Eric B. Ford³, William J. Borucki¹, Francois Fressin⁴, Geoffrey W. Marcy⁵, Jerome A. Orosz⁶, Jason F. Rowe⁷, Guillermo Torres⁴, William F. Welsh⁶, Natalie M. Batalha⁸, Stephen T. Bryson¹, Lars A. Buchhave⁹, Douglas A. Caldwell⁷, Joshua A. Carter⁴, David Charbonneau⁴, Jessie L. Christiansen⁷, William D. Cochran¹⁰, Jean-Michel Desert⁴, Edward W. Dunham¹¹, Michael N. Fanelli¹², Jonathan J. Fortney², Thomas N. Gautier III¹³, John C. Geary⁴, Ronald L. Gilliland¹⁴, Michael R. Haas¹, Jennifer R. Hall¹⁵, Matthew J. Holman⁴, David G. Koch¹, David W. Latham⁴, Eric Lopez², Sean McCauliff¹⁵, Neil Miller², Robert C. Morehead³, Elisa V. Quintana⁷, Darin Ragozzine⁴, Dimitar Sasselov⁴, Donald R. Short⁶ & Jason H. Steffen¹⁶

Six Transiting Planets

Kepler-11b : P=10.3 d Kepler-11c : P= 13.02 d Kepler-11d : P= 22.69 d Kepler-11e : P= 32 d Kepler-11f : P =46.7 d Kepler-11g : P=118.3 d

Dynamical Determinations of the Mass through Transit Timing Variations (TTVs)

Figure 3 | Transit timing variations and dynamical fits. Observed mid-times of planetary transits (see section 3 of the Supplementary Information for transit-fitting method and Supplementary Table 2 for transit times) minus a calculated linear ephemeris, are plotted as dots with 1σ error bars; colours correspond to the planetary transit signals in Figs 1 and 2. The times derived from the 'circular fit' model described in Supplementary Table 4 are given by the open diamonds. Contributions of individual planets to these variations are shown in Supplementary Fig. 6a.

Comparison to our Solar System

Single versus Multiple Planets

Red: single transits, Blue: multiple transits.

Single planets come in all sizes, but there are relatively few giant planets in transiting multiple system

Kepler 20 b, c, d, e, f: A Planet System with2 Earth-sized Planets

Kepler-20a (G-star)

Kepler 37d – The smallest Exoplanet

Reflected Light from the Planet

CoRoT-1b: Secondary Transit und Phase Curve

The first detection of the phase curve and secondary transit in the optical.

Kepler does this better:

The detection of the secondary transit demonstrated that Kepler should easily detect the transit of an Earth-size planet

Albedo Measurements of Exoplanets

Planet	Albedo (geometric)	T _{eq} (K)	Reference
HD 209458 b	< 0.08 (3o)	1550	Rowe et al. 2008
HD 75289A b	< 0.12 (3o)	1260	Leigh et al. 2003
CoRoT-1 b	< 0.20 (3o)	2330	Snellen et al. 2010
CoRoT-2 b	0.09 ± 0.04	1910	Alonso et al. 2010
HAT-P-7 b	0.12 ± 0.02	2220	Christiansen et al. 2010,
Kepler-5 b	0.12 ± 0.04	1868	Desert al. 2011,
Kepler-6 b	0.11 ± 0.04	1500	Desert al. 2011
Kepler-7b	0.32 ± 0.03	1750	Demory et al. 2011
Earth	0.37		
Jupiter	0.52		
Moon	0.12		

Close-in giant planets are dark!

Planets in Binary Star Systems

Kepler's Circumbinary Planets

The Circumbinary Planets

Planets in the Habitable Zone

Kepler-22b: "Super-Earth" in the Habitable Zone

Kepler-62 System

Kepler's "First" Habitable Earth-sized Planet

R = 1.07 ± 0.12 R_{earth}

 $R = 1.25 \pm 0.14 R_{earth}$

 $R = 1.40 \pm 0.16 R_{earth}$

R = 1.27 ± 0.15 R_{earth}

 $R = 1.11 \pm 0.14 R_{earth}$

Kepler's "First" Habitable Earth-sized Planet

NASA's Public Relations (Marketing) Machine

December 5, 2011: Kepler-22b "NASA's Kepler Mission Confirms its **First** Planet in the Habitable Zone of a Sun-like Star"

April 18, 2013: Kepler-62e,f and Kepler-69c "Earth-Like Planets Found in Habitable Zone around Kepler-62, Kepler 69" "These planets are not like anything in our solar system. They have endless oceans."

April 17, 2014: Kepler-168f "NASA's Kepler Discovers **First** Earth-like Planet in the Habitable Zone of Another Star"

Kepler's lineup of "Habitable Planets" before Kepler 186f (the "first")

New Planet Discovered 400 Light Years Away From Public's Interest

NEWS IN PHOTOS · Science & Technology · Science · Space · ISSUE 41-34 · Aug 24, 2005

What about η_{Earth} (fraction of stars with rocky planets in the habitable zone)?

From Petigura et al. (Kepler Conference 2013):

- Independent analysis of Kepler light curves
- 603 small planet candidates found, 10 in Habitable Zone
- Detection bias assessed with simulations inserting and recovering simulated planets
- Spectroscopy of the Host Stars with P > 100 d

The Answer (?):

22 \pm 8% of stars have planets with radii 1-2 R_E, and incident stellar flux 0.25-4 F_E

 $4 F_{E} \rightarrow 0.5 AU$ $0.25 F_{E} \rightarrow 2 AU$

Kepler observed 100.000 stars, should have found ~100 planets, but only 10 real detections → factor of 10 correction

➔ If your "experiment" is not detecting most of the planets, you need to design one that does

Status of CoRoT

- On 7 March 2009 one DPU lost (2 CCDs)
- On 2 November 2013 second DPU lost, just before the start of the second extended mission
- All efforts to revive have failed.
- Operations will formally end mid-2015
- > 160.000 light curves

Status of Kepler

- In July 2012 one reaction wheel lost
- On 14 May 2013 second reaction wheel lost just before the start of the extended mission
- Precision pointing lost unable to collect high precision light curves for a long time
- Efforts to revive reaction wheels have stopped
- 150.000 light curves at start, 100.000 light curves over 4 years.

The Space Transit Search Graveyard

"Rumors of my death were greatly exaggerated."

SuperCoRoT

- 2 Reaction Wheels + Thrusters for positioning
- Look in Ecliptic where solar wind has minimum effect
- Observe a field of 10.000 20.000 stars for 40-80 days, move to the next field
- 4-6 fields per year
- precision ~ 3×10^{-4}
The PLATO Mission

Mission approved for ESA M3 launch selection

PLATO :

- planets around bright stars
- astroseismology of hosts
- ultra-high precision
- very wide field

Accuracy:

An Earth around a Sun :

- radius up to 2%
- mass up to 10%
- age known to 10%

The Legacy of CoRoT and Kepler

- The most precise light curves and thus best measurements of exoplanet radii and densities. 200 Confirmed planets, ~3000 candidate planets
- 2. Unbiased detections: Every transiting planet down to Superearth (Earth) detected, unlike ground based surveys that only find the largest exoplanets
- First transiting rocky planet found by CoRoT (7b) and its twin by Kepler (10b)
- 4. Rocky planets in "ultra-short" period orbits <
 1 d (Kepler 78b: 8.5 hours!)

The Legacy of CoRoT and Kepler

- 5. Smallest Planet (1.4 R_{Moon}) found by Kepler
- 6. Multi-planet, compact superearth systems are common
- 7. More Neptunes-size than Jupiter-size planets
- 8. Multi-system: Neptunes and Superearths, Single: Jupiters, Neptunes, and Superearths
- 9. Circumbinary planets are common

The Legacy of CoRoT and Kepler

- 10.May be a diversity in densities, even for adjacent planets → need for PLATO
- 11. First rough estimate of η_{Earth} (22%) but a more accurate value is needed \rightarrow PLATO
- 12. Lots of stellar astrophysics → not just exoplanet missions!

We are still searching for a planetary system like ours!

"A transit mission's got to know its limitations."

Kepler Parameter Space

Thank you for your attention!