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horizon problem of the hot Big Bang

today: 13.7 billion years

CMB: 370,000 years

Big Bang:  t = 0

time t

why so many causally 
disconnected regions with 

ΔT/T ~ 10-5 ?



            Inflationary UniverseInflationary Universe

Inflation is an extremely rapid acceleration in the universe soon after its creation.

[picture from Munich lectures: Linde ’07]



slow-roll inflation ...

Figure 1: Motion of the scalar field in the theory with V (φ) = m2

2 φ2. Several different regimes
are possible, depending on the value of the field φ. If the potential energy density of the field is
greater than the Planck density M4

p = 1, φ ! m−1, quantum fluctuations of space-time are so
strong that one cannot describe it in usual terms. Such a state is called space-time foam. At a
somewhat smaller energy density (for m " V (φ) " 1, m−1/2 " φ " m−1) quantum fluctuations
of space-time are small, but quantum fluctuations of the scalar field φ may be large. Jumps
of the scalar field due to quantum fluctuations lead to a process of eternal self-reproduction of
inflationary universe which we are going to discuss later. At even smaller values of V (φ) (for
m2 " V (φ) " m, 1 " φ " m−1/2) fluctuations of the field φ are small; it slowly moves down
as a ball in a viscous liquid. Inflation occurs for 1 " φ " m−1. Finally, near the minimum of
V (φ) (for φ " 1) the scalar field rapidly oscillates, creates pairs of elementary particles, and
the universe becomes hot.
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[Linde ’82]
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Inflation ...

• inflation: period quasi-exponential expansion of the 
very early universe 
 
(solves horizon, flatness problems of hot big bang ...)  
 
 

• driven by the vacuum energy of a slowly rolling light 
scalar field:

e.o.m.: �̈ + 3H�̇ + V � = 0

[Guth ‘80]

[Linde;  Albrecht & Steinhardt ‘82]



Inflation ...
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• inflation generates metric perturbations:  
scalar (us) & tensor

PT � H2 � VandPS � H2

⇥
�

�
�⇤

⇤

⇥2

� knS�1

nS = 1� 6� + 2⇥

Inflation ...

• scalar spectral index:

window to GUT scale &	

direct measurement of inflation scale

• tensor-to-scalar ratio:

r ⌘ PT

PS
= 16✏



Cosmic Microwave Background:!
PLANCK cosmology results 2013!

Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter�CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ⇤ = 50, and linear beyond. The vertical scale is ⇤(⇤+ 1)Cl/2�. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-⇤ region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ⇤ = 50,
and linear beyond. The vertical scale is ⇤(⇤ + 1)Cl/2�. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di⇥ers from the ERCSC in its extraction philosophy: more e⇥ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di⇥erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di⇥erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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2 Peter Schneider et al.: B-modes in cosmic shear from source redshift clustering

field. The relation between the shear γ(θ) = γ1(θ)+iγ2(θ)
and the projected matter density κ(θ) is

γ(θ) =
1

π

∫

IR2

d2θ′ D(θ − θ
′)κ(θ′) , (1)

with the kernel

D(θ) =
θ22 − θ21 − 2iθ1θ2

|θ|4
; (2)

here, κ is the dimensionless surface mass density, i.e., the
physical surface mass density divided by the ‘critical’ sur-
face mass density, as usual in gravitational lensing; we fol-
low the notation of BS01 in this paper. Since the two shear
components originate from a single scalar field, they are
related to each other; in particular, their partial deriva-
tives should satisfy compatability relations, as we shall
discuss in Sect. 2 below. In analogy with the polarization
of the CMB, a shear field satisfying these compatability
relations is called an E-mode shear field.

Pen et al. (2002) pointed out that the cosmic shear
data of van Waerbeke et al. (2001) contains not only an
E-mode, but also a statistically significant B-mode con-
tribution in addition. Such B-modes can be generated by
effects unrelated to gravitational lensing, such as intrinsic
alignment of galaxies (e.g., Heavens et al. 2000, Crittenden
et al. 2001a; Croft & Metzler 2000; Catelan et al. 2000) or
remaining systematics in the data reduction and analysis.

In this paper we show that a B-mode contribution to
the cosmic shear is obtained by lensing itself. A B-mode
is generated owing to the clustering properties of the faint
galaxies from which the shear is measured. This spatial
clustering implies an angular separation-dependent clus-
tering in redshift, which is the origin not only of the B-
mode of the shear, but also of an additional E-mode con-
tribution.

The paper is organized as follows: in Sect. 2 we provide
a tutorial description of the E/B-mode decomposition of a
shear field. Most of the results there were derived before in
Crittenden et al. (2001b, hereafter C01), but we formulate
them in standard lensing notation, which will be needed
for the later investigation. The calculation of two-point
cosmic shear statistics in the presence of source clustering
is presented in Sect. 3 where it is shown that this clustering
produces a B-mode. Numerical and analytical estimates of
the amplitude of this B-mode are provided in Sect. 4 and
discussed in Sect. 5.

2. E/B-mode decomposition of a shear field

In this section we provide the basic relations for the de-
composition of the shear field into E- and B-modes. Most
of these relations have been obtained in C01; we shall write
them here in standard lensing notation.

2.1. Motivation

If the shear field is obtained from a projected surface mass
density κ as in Eq. (1), then the gradient of the density

field κ is related to the first spatial derivatives of the shear
components in the following way (Kaiser 1995):

∇κ =

(

γ1,1 + γ2,2

γ2,1 − γ1,2

)

≡ u (3)

The vector field u can be obtained from observations, e.g.
in weak lensing cluster mass reconstructions, by obtain-
ing a smoothed version of the shear field and then differ-
entiating this numerically. Owing to noise, the resulting
(‘observed’) field u will in general not be a gradient field.
The non-gradient part of u is then a readily identifiable
noise component and can be filtered out in the mass re-
construction. Seitz & Schneider (1996) provided a scheme
for this noise filtering (see also Seitz & Schneider 2001 for
a simpler though equivalent method), which was shown by
Lombardi & Bertin (1998) to be an optimal reconstruction
method.

If the shear field cannot be ascribed to a single geomet-
rically thin gravitational lens, the non-gradient part of u
is not necessarily due to noise. For example, if the galaxies
have intrinsic alignments, this may induce a curl-part of
u. To project out the gradient and curl part of u, we take
a further derivative of u, and define

∇2κE = ∇ · u ; ∇2κB = ∇× u ≡ u2,1 − u1,2 . (4)

Through these relations, κE and κB are not uniquely
defined on a finite data field; as discussed in Seitz &
Schneider (1996), a further condition is needed to specify
the two modes uniquely. However, we shall not be con-
cerned here with finite-field effects.

An alternative way to define κE and κB is through the
Kaiser & Squires (1993) mass-reconstruction relation

κE(θ) + iκB(θ) =
1

π

∫

IR2

d2θ′D∗(θ − θ
′) γ(θ′) , (5)

which formally requires data on an infinite field; here, D∗

denotes the complex-conjugate of the complex kernel (2).
If γ is of the form (1) with a real field κ, then the result
from (5) will be real, κE = κ, κB = 0. In applications
of the KS-formula (5) to observational data, where the
recovered shear field necessarily is noisy, one usually takes
the real part of the integral to obtain the projected mass
density field. For a general shear field, the result from (5)
will be complex, with the real part yielding the E-mode,
and the imaginary part corresponding to the B-mode.

To simplify notation and calculations, it is convenient
to express two-component quantities in terms of complex
numbers. We define the E- and B-mode potentials ψE and
ψB by

∇2ψE,B = 2κE,B , (6)

and combine the two modes into the complex fields

κ = κE + iκB , ψ = ψE + iψB . (7)

The complex shear γ = γ1 + iγ2 is obtained from the
potential ψ by γ = Dψ, where the differential operator
D = (∂11 − ∂22)/2 + i∂12; hence,

γ =

[

1

2

(

ψE
,11 − ψE

,22

)

− ψB
,12

]

+ i

[

ψE
,12 +

1

2

(

ψB
,11 − ψB

,22

)

]

.

fluctuation density field �

E-mode/B-mode components �E , �B

polarization vector field ��� = �u

div u: 
polarization vector 

field has non-
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polarization

curl u: 
polarization vector 

field has non-
vanishing curl & 

zero divergence — 
B-mode 
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single field models ...

• monomial — large-field, r ~ 0.1 
(n = 2/3 , 4/5, 1 , 2 , 3 , 4):

• natural (axion) inflation — large & small-field:

Planck Collaboration: Constraints on inflation 9

HZ HZ + YP HZ + Ne⌅ ⇥CDM
105⇤bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⇤ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 ⇤MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌃ 0.125+0.016

�0.014 0.109+0.013
�0.014 0.105+0.014

�0.013 0.089+0.012
�0.014

ln
�
1010As

⇥
3.133+0.032

�0.028 3.137+0.027
�0.028 3.143+0.027

�0.026 3.089+0.024
�0.027

ns — — — 0.9603 ± 0.0073
Ne⌅ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best-fit �2� ln(L) with respect to the standard ⇥CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Sampling the power spectrum parameters As, ns, and r is
not the only method for constraining slow roll inflation. Another
possibility is to sample the HFF in the analytic expressions for
the scalar and tensor power spectra (Stewart & Lyth, 1993; Gong
& Stewart, 2001; Leach et al., 2002). In the Appendix, we per-
form a comparison of slow-roll inflationary predictions by sam-
pling the HFF with Planck data, and show that the results ob-
tained in this way agree with those derived by sampling the
power spectrum parameters. This confirms similar studies with
previous data (Hamann et al., 2008c; Finelli et al., 2010).

The spectral index estimated from Planck+WP data is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation. The
Planck constraint on r depends slightly on the pivot scale; we
adopt k⇤ = 0.002 Mpc�1 to quote our result, with r0.002 < 0.12
at 95% CL. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al., 2012a), the WMAP7 + ACT limit of r < 0.28 (Sievers
et al., 2013), and the WMAP7 + SPT limit of r < 0.18 (Story
et al., 2012). The new bound from Planck is consistent with
the limit from temperature anisotropies alone (Knox & Turner,
1994). When a possible tensor component is included, the spec-
tral index from Planck+WP is not significantly changed, with
ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V⇤ =
3⇧2As

2
r M4

pl = (1.94 ⇥ 1016 GeV)4 r⇤
0.12

, (33)

at 95% CL. This is equivalent to an upper bound on the Hubble
parameter during inflation of H⇤/Mpl < 3.7 ⇥ 10�5. In terms of
slow-roll parameters, Planck+WP constraints imply �V < 0.008
at 95% CL, and ⇥V = �0.010+0.005

�0.011.
The Planck results on ns and r are robust to the addition

of external data sets (see Table 4). When the high-� CMB
ACT+SPT data are added, we obtain ns = 0.9600 ± 0.0072 and
r0.002 < 0.11 at 95% CL. Including the Planck lensing likeli-
hood gives ns = 0.9653 ± 0.0069 and r0.002 < 0.13, and adding
BAO data gives ns = 0.9643 ± 0.0059 and r0.002 < 0.12. These
bounds are robust to the small changes in the polarization likeli-
hood at low multipoles. To test this robustness, instead of using
the WMAP polarization likelihood, we impose a Gaussian prior
⌃ = 0.07 ± 0.013 to take into account small shifts due to un-
certainties in residual foreground contamination or instrument
systematics in the evaluation of ⌃, as performed in Appendix B
of Planck Collaboration XVI (2013). We find at most a reduction
of 8% for the upper bound on r.

It is useful to plot the inflationary potentials in the ns–r plane
using the first two slow-roll parameters evaluated at the pivot
scale k⇤ = 0.002 Mpc�1 (Dodelson et al., 1997). Given our ig-
norance of the details of the epoch of entropy generation, we
assume that the number of e-folds N⇤ to the end of inflation lies
in the interval [50, 60]. This uncertainty is plotted for those po-
tentials predicting an exit from inflation without changing the
potential.

Fig. 1 shows the Planck constraints in the ns � r plane and
indicates the predictions of a number of representative inflation-
ary potentials. The sensitivity of Planck data to high multipoles
removes the degeneracy between ns and r found using WMAP
data. Planck data favour models with a concave potential. As
shown in Fig. 1, most of the joint 95% allowed region lies be-
low the convex potential limit, and concave models with a red
tilt in the range [0.945-0.98] are allowed by Planck at 95% CL.
In the following we consider the status of several illustrative and
commonly discussed inflationary potentials in light of the Planck
observations.

Power law potential and chaotic inflation

The simplest class of inflationary models is characterized by a
single monomial potential of the form

V(⌥) = ⌅M4
pl

⇤
⌥

Mpl

⌅n
. (34)

This class of potentials includes the simplest chaotic models, in
which inflation starts from large values for the inflaton, ⌥ > Mpl.
Inflation ends by violation of the slow-roll regime, and we as-
sume this occurs at �V = 1. According to Eqs. 5, 6, and 15,
this class of potentials predicts to lowest order in slow-roll pa-
rameters ns � 1 ⇧ �n(n + 2)M2

pl/⌥
2
⇤, r ⇧ 8n2M2

pl/⌥
2
⇤, ⌥

2
⇤ ⇧

nM2
pl(4N⇤ + n)/2. The ⌅⌥4 model lies well outside of the joint

99.7% CL region in the ns � r plane. This result confirms pre-
vious findings from e.g., Hinshaw et al. (2012a) in which this
model is well outside the 95% CL for the WMAP 9-year data
and is further excluded by CMB data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-� data for
N⇤ � 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⇥V = 0 and lies within the
95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive

Planck Collaboration: Constraints on inflation 11

joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇥ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(⌥) = �4
⇤
1 � ⌥

2

µ2

⌅2

, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(⌥) = �4
⇧
1 + cos

⇤
⌥

f

⌅⌃
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⌅ 1 � M2

pl/ f 2 holds for small f and ns ⌅ 1 � 2/N,
r ⌅ 8/N holds for large f , approximating the m2⌥2 potential in
the latter case (with N⇥ ⌅ (2 f 2/M2

pl) ln[sin(⌥e/ f )/ sin(⌥⇥/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(⌥, �) = �4
⇤
1 � �

2

µ2

⌅2

+ U(⌥) +
g2

2
⌥2�2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton ⌥. The
second field � is close to the origin during the slow-roll regime
for ⌥, and inflation ends either by breakdown of slow roll for
the inflaton at ⇥⌥ ⌅ M2

pl(dU/d⌥)2/(�4 + U(⌥))2 ⌅ 1 or by the
waterfall transition of �. The simplest models with

U(⌥) =
m2

2
⌥2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2⌥2/2 ⇤ �4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(⌥) ⇧ �4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(⌥) = �h�
4 ln

⇤
⌥

µ

⌅
, (42)

predicts ns � 1 ⌅ �(1 + 3�h/2)/N⇥ and r ⌅ 8�h/N⇥. For �h ⇧ 1
and N⇥ ⌥ 50, ns ⌥ 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇥ < 50 or a non-negligible �h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
�

d4x
 �g

M2
pl

2

⇤
R +

R2

6M2

⌅
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⌅ �8(4N⇥+9)/(4N⇥+3) and r ⌅ 192/(4N⇥+3)2. Since r
is suppressed by another 1/N⇥ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇥ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
�

d4x
 �g

⌥
↵↵↵↵↵ 

M2
pl + ⌃⌥

2

2
R � 1

2
gµ⇧�µ⌥�⇧⌥ �

⇤

4

�
⌥2 � ⌥2

0

⇥2
�
�����⌦ ,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (⌥0 = 0)
agrees with the Planck+WP data for ⌃ , 0. Within the range
50 < N⇥ < 60, this model is within the Planck+WP joint
95% CL region for ⌃ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to ⇤/⌃2
for ⌃ ⌃ 1, and therefore the problem of tiny values for the in-
flaton self-coupling ⇤ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime ⌥0 ⇧ Mpl is allowed and ⌥
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⌃ ⌃ 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇥. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⌃ < 0 and |⌃|⌥2
0/M

2
pl ⇤ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton ⌥ > ⌥0 is
disfavoured by Planck data, whereas the small field case ⌥ < ⌥0
is in agreement with the data.

ns = 1� n + 2
2Ne

, r =
4n

Ne

��(Ne) =
�

2nNe MP

f � 1.5 MP : large-field (m2�2) : ns = 1� 2
Ne

, r =
8

Ne

f � 1.5 MP : small-field : ns � 1� M2
P

f2
, r � 0

[Linde ‘83]
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-⌦ Planck+WP+BAO

⇥CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇥CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇥ = 0.002 Mpc�1.

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇥ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(⌅) = ⇥4 exp
�
�⇥ ⌅

Mpl

⇥
(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) ⌥ t2/⇥2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(⌅) = ⇥4
�
⌅

Mpl

⇥��
(36)

lead to inflation with a(t) ⌥ exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⌃ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(⌅) ⌃ ⇥4
�
1 � ⌅

p

µp + ...

⇥
, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⌃ �4M2

pl/µ
2 + 3r/8 and

r ⌃ 32⌅2
⇥M2

pl/µ
4. This potential leads to predictions in agree-

ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ � 9 Mpl.

Models with p ⌅ 3 predict ns � 1 ⌃ �(2/N)(p � 1)/(p � 2)
when r ⇧ 0. The hill-top potential with p = 3 lies outside the

p = 2 : large-field, fits Planck for µ � 9 MP

p � 3 : small-field : ns = 1� 2
Ne

p� 1
p� 2

, r � 0 , fits Planck for p � 4
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇥ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(⌥) = �4
⇤
1 � ⌥

2

µ2

⌅2

, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(⌥) = �4
⇧
1 + cos

⇤
⌥

f

⌅⌃
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⌅ 1 � M2

pl/ f 2 holds for small f and ns ⌅ 1 � 2/N,
r ⌅ 8/N holds for large f , approximating the m2⌥2 potential in
the latter case (with N⇥ ⌅ (2 f 2/M2

pl) ln[sin(⌥e/ f )/ sin(⌥⇥/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(⌥, �) = �4
⇤
1 � �

2

µ2

⌅2

+ U(⌥) +
g2

2
⌥2�2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton ⌥. The
second field � is close to the origin during the slow-roll regime
for ⌥, and inflation ends either by breakdown of slow roll for
the inflaton at ⇥⌥ ⌅ M2

pl(dU/d⌥)2/(�4 + U(⌥))2 ⌅ 1 or by the
waterfall transition of �. The simplest models with

U(⌥) =
m2

2
⌥2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2⌥2/2 ⇤ �4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(⌥) ⇧ �4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(⌥) = �h�
4 ln

⇤
⌥

µ

⌅
, (42)

predicts ns � 1 ⌅ �(1 + 3�h/2)/N⇥ and r ⌅ 8�h/N⇥. For �h ⇧ 1
and N⇥ ⌥ 50, ns ⌥ 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇥ < 50 or a non-negligible �h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
�

d4x
 �g

M2
pl

2

⇤
R +

R2

6M2

⌅
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⌅ �8(4N⇥+9)/(4N⇥+3) and r ⌅ 192/(4N⇥+3)2. Since r
is suppressed by another 1/N⇥ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇥ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
�

d4x
 �g

⌥
↵↵↵↵↵ 

M2
pl + ⌃⌥

2

2
R � 1

2
gµ⇧�µ⌥�⇧⌥ �

⇤

4

�
⌥2 � ⌥2

0

⇥2
�
�����⌦ ,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (⌥0 = 0)
agrees with the Planck+WP data for ⌃ , 0. Within the range
50 < N⇥ < 60, this model is within the Planck+WP joint
95% CL region for ⌃ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to ⇤/⌃2
for ⌃ ⌃ 1, and therefore the problem of tiny values for the in-
flaton self-coupling ⇤ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime ⌥0 ⇧ Mpl is allowed and ⌥
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⌃ ⌃ 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇥. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⌃ < 0 and |⌃|⌥2
0/M

2
pl ⇤ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton ⌥ > ⌥0 is
disfavoured by Planck data, whereas the small field case ⌥ < ⌥0
is in agreement with the data.
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇥ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(⌥) = �4
⇤
1 � ⌥

2

µ2

⌅2

, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(⌥) = �4
⇧
1 + cos

⇤
⌥

f

⌅⌃
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⌅ 1 � M2

pl/ f 2 holds for small f and ns ⌅ 1 � 2/N,
r ⌅ 8/N holds for large f , approximating the m2⌥2 potential in
the latter case (with N⇥ ⌅ (2 f 2/M2

pl) ln[sin(⌥e/ f )/ sin(⌥⇥/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(⌥, �) = �4
⇤
1 � �

2

µ2

⌅2

+ U(⌥) +
g2

2
⌥2�2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton ⌥. The
second field � is close to the origin during the slow-roll regime
for ⌥, and inflation ends either by breakdown of slow roll for
the inflaton at ⇥⌥ ⌅ M2

pl(dU/d⌥)2/(�4 + U(⌥))2 ⌅ 1 or by the
waterfall transition of �. The simplest models with

U(⌥) =
m2

2
⌥2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2⌥2/2 ⇤ �4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(⌥) ⇧ �4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(⌥) = �h�
4 ln

⇤
⌥

µ

⌅
, (42)

predicts ns � 1 ⌅ �(1 + 3�h/2)/N⇥ and r ⌅ 8�h/N⇥. For �h ⇧ 1
and N⇥ ⌥ 50, ns ⌥ 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇥ < 50 or a non-negligible �h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
�

d4x
 �g

M2
pl

2

⇤
R +

R2

6M2

⌅
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⌅ �8(4N⇥+9)/(4N⇥+3) and r ⌅ 192/(4N⇥+3)2. Since r
is suppressed by another 1/N⇥ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇥ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
�

d4x
 �g

⌥
↵↵↵↵↵ 

M2
pl + ⌃⌥

2

2
R � 1

2
gµ⇧�µ⌥�⇧⌥ �

⇤

4
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(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (⌥0 = 0)
agrees with the Planck+WP data for ⌃ , 0. Within the range
50 < N⇥ < 60, this model is within the Planck+WP joint
95% CL region for ⌃ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to ⇤/⌃2
for ⌃ ⌃ 1, and therefore the problem of tiny values for the in-
flaton self-coupling ⇤ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime ⌥0 ⇧ Mpl is allowed and ⌥
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⌃ ⌃ 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇥. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⌃ < 0 and |⌃|⌥2
0/M

2
pl ⇤ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton ⌥ > ⌥0 is
disfavoured by Planck data, whereas the small field case ⌥ < ⌥0
is in agreement with the data.

ns = 1� 1 + 3�h/2
Ne

r =
8�h

Ne
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• R+R2 / Higgs inflation / fibre inflation in LVS string 
scenarios — O(MP) field range,  r < 0.01:
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N⇥ & 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(⌥) = �4
⇤
1 � ⌥

2

µ2

⌅2

, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ & 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(⌥) = �4
⇧
1 + cos

⇤
⌥

f

⌅⌃
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5 Mpl) or small field ( f . 1.5 Mpl) classification scheme.
Therefore, ns ⌅ 1 � M2

pl/ f 2 holds for small f and ns ⌅ 1 � 2/N,
r ⌅ 8/N holds for large f , approximating the m2⌥2 potential in
the latter case (with N⇥ ⌅ (2 f 2/M2

pl) ln[sin(⌥e/ f )/ sin(⌥⇥/ f )]).
This model agrees with Planck+WP data for f & 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(⌥, �) = �4
⇤
1 � �

2

µ2

⌅2

+ U(⌥) +
g2

2
⌥2�2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton ⌥. The
second field � is close to the origin during the slow-roll regime
for ⌥, and inflation ends either by breakdown of slow roll for
the inflaton at ⇥⌥ ⌅ M2

pl(dU/d⌥)2/(�4 + U(⌥))2 ⌅ 1 or by the
waterfall transition of �. The simplest models with

U(⌥) =
m2

2
⌥2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2⌥2/2 ⇤ �4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(⌥) ⇧ �4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(⌥) = �h�
4 ln

⇤
⌥

µ

⌅
, (42)

predicts ns � 1 ⌅ �(1 + 3�h/2)/N⇥ and r ⌅ 8�h/N⇥. For �h ⇧ 1
and N⇥ ⌥ 50, ns ⌥ 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N⇥ < 50 or a non-negligible �h give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
�

d4x
 �g

M2
pl

2

⇤
R +

R2

6M2

⌅
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⌅ �8(4N⇥+9)/(4N⇥+3) and r ⌅ 192/(4N⇥+3)2. Since r
is suppressed by another 1/N⇥ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇥ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
�

d4x
 �g

⌥
↵↵↵↵↵ 

M2
pl + ⌃⌥

2

2
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2
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(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (⌥0 = 0)
agrees with the Planck+WP data for ⌃ , 0. Within the range
50 < N⇥ < 60, this model is within the Planck+WP joint
95% CL region for ⌃ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to ⇤/⌃2
for ⌃ ⌃ 1, and therefore the problem of tiny values for the in-
flaton self-coupling ⇤ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime ⌥0 ⇧ Mpl is allowed and ⌥
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⌃ ⌃ 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N⇥. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ⌃ < 0 and |⌃|⌥2
0/M

2
pl ⇤ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton ⌥ > ⌥0 is
disfavoured by Planck data, whereas the small field case ⌥ < ⌥0
is in agreement with the data.
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shades of difficulty ...
• observable tensors link levels of difficulty:

[Lyth ’97]

• r = O(1/Ne) models:
Large-Field inflation ... needs 
suppression of all-order corrections	

➥ symmetry is essential!

�� �
�

NeMP �MP �

• r = O(1/Ne2) models:

�� � O(MP ) ⇥ needs severe fine-tuning of all dim-6 
operators, or accidental cancellations

• r << O(1/Ne2) models:
��� O(MP ) ⇥

Small-Field inflation ... needs control of 
leading dim-6 operators	

➥ enumeration & fine-tuning reasonable

r � PT

PS
= 16� ⇥ 0.003

�
50
Ne

�2 �
�⇥

MP

�2



• We need to understand generic dim ≥ 6 operators  
 
 
 
 

• requires UV-completion, e.g. string theory: need to know 
string and α‘-corrections, backreaction effects, ...	


• typical approximations (tree-level, large-volume/non-
compact, probe ...) often insufficient	


• detailed information about moduli stabilization necessary!	


• string theory manifestation of the supergravity eta problem

why strings?

Op�6 � V (�)
�

�

MP

�p�4

� �� �
�

�

MP

�p�6

� 1 �p � 6 if � > MP



shades of difficulty ...
• observable tensors link levels of difficulty:

[Lyth ’97]

• r = O(1/Ne) models:

axion monodromy inflation�� �
�

NeMP �MP �

• r = O(1/Ne2) models:

�� � O(MP ) ⇥ fibre inflation in LARGE volume 
scenarios (LVS) 

• r << O(1/Ne2) models:
��� O(MP ) ⇥

warped D-brane inflation & DBI;	

varieties of Kahler moduli inflation
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[KKLMMT ’03] 
[Baumann, Dymarsky, Klebanov, McAllister & Steinhardt ’07]

[Cicoli, Burgess & Quevedo ’08]



large field inflation in string theory ...  



• either need many fields in lockstep:  
 
 
 
 
 
called   “ N-flation  “ 

• string theory embedding is challenging, due to 
need for large number of fields w/ instanton 
potentials ...

large field inflation ...

[Dimopoulos, Kachru, McGreevy & Wacker ’05]

��diag. �
� �

i=1...N

��2
i ⇥ 1 with |��i| < 1

see: [Grimm ‘07] for coming very close

but constraints from GN renormalization & dS entropy: [Conlon ’12]

and: [Cicoli, Dutta & Maharana ‘14]



axion monodromy inflation - general story

• p-form axions get non-periodic potentials from 
coupling to branes or fluxes/field-strengths  

• produces periodically spaces set of multiple 
branches of large-field potentials:  
 

�

V (�) � µ4�p�p + �4 cos(�/f)

[Berg, Pajer & Sjörs ’09]

[Lawrence, Kaloper & Sorbo ’11]
[Dubovsky, Lawrence & Roberts ’11]

[McAllister, Silverstein & AW ’08]
[Kaloper & Sorbo ’08]
[Flauger, McAllister, Pajer, Xu & AW ’09]

[Dong, Horn, Silverstein & AW ’10]



• now let’s take a 5-brane:

axion monodromy inflation - an example

wraps: (3 + 1)large + 2small

space
time

e.g. a 2-sphere

• put a B2 (or C2) field on small 2-sphere with volume ν :

monodromy; breaks
perturbative shift
symmetry in B2

� V (b) � b , b large, non-periodic

[McAllister, Silverstein & AW ’08]

S5�brane � 1
gs

�

M4⇥2-sphere

d6�
�

det(G + B)

=
1
gs

�

M4

d4x
�
�g

�
v2 + b2

nS � 0.975
r � 0.08



axion monodromy inflation - a 2nd example

• 2 axions, a 5-brane, and an ED1-instanton:

Dante’s Inferno

Marcus Berg,1 Enrico Pajer,2 and Stefan Sjörs1,2

1Oskar Klein Center for Cosmoparticle Physics and Department of Physics,
Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden

2Institute for High Energy Phenomenology, Newman Laboratory of
Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA

We present a simple two-field model of inflation and show how to embed it in string theory as
a straightforward generalization of axion monodromy models. Phenomenologically, the predictions
are equivalent to those of chaotic inflation, and in particular include observably large tensor modes.
The whole high-scale large-field inflationary dynamics takes place within a region of field space
that is parametrically subplanckian in diameter, hence improving our ability to control quantum
corrections and achieve slow-roll inflation.

In the observationally successful framework of infla-
tionary cosmology, we can study detectable consequences
of physics at very high energies. The energy scale at
which inflation took place is a free parameter that is still
very poorly constrained, and can range from the GUT
scale to the TeV scale (or even less). The high-scale end
of this interval is the most exciting: first, it is the closest
to the Planck scale1 M

P

, where quantum gravity should
become important; second, the scale of inflation is de-
termined by the amplitude of primordial tensor modes,
which will be detectable in the CMB only if this scale is
close to the GUT scale.

An interesting perspective on high-scale inflation is
given by the Lyth bound [1]. This says that detectably-
large tensor modes, which are equivalent to high scale in-
flation2, require superplanckian variation of the inflaton
field. This increases the UV-sensitivity of inflation, e.g. in
the sense that an infinite sequence of Planck-suppressed
higher dimension operators become crucial for assessing
the success of the model. This suggests that high-scale
large-field models provide a framework particularly well
suited to test candidate UV completions of quantum field
theory plus general relativity, such as string theory.

In this work we study a model of inflation, which
we call Dante’s Inferno, where high-scale large-field in-
flationary dynamics takes place within a region of field
space which is parametrically subplanckian in diameter.
This provides a new perspective on the Lyth bound and
its implications. We organize our presentation as follows.
First, we describe the e↵ective field theory implementa-
tion of this model, which contains a mechanism to allevi-
ate any ⌘-problem that might be present. Then we show
how Dante’s Inferno can be embedded in string theory,
as a straightforward generalization of axion monodromy
models. The multi-field dynamics alleviates two of the
leading backreaction constraints present in the single-
field case.

1 We use the reduced Planck mass defined by M2
P ⌘ (8⇡GN )�1.

2 We assume perturbations are generated by the inflaton.

Figure 1: The potential in (2) (for W (r) = 1
2m2r2) in Carte-

sian coordinates, which faithfully represent the metric on field
space.

THE EFFECTIVE FIELD THEORY MODEL

Our e↵ective model consists of two axions r and ✓
whose decay constants f

r

and f
✓

obey f
r

< f
✓

. A linear
combination of r and ✓ receives a periodic potential from
some non-perturbative e↵ect, which breaks their contin-
uous shift symmetry down to a discrete one. In addition,
we explicitly break the shift symmetry for r by introduc-
ing a term W (r) in the potential, where W (r) is an a pri-
ori arbitrary regular function. The resulting Lagrangian
for canonically normalized fields is

L =
1
2
(@r)2 +

1
2
(@✓)2 � V (r, ✓) , (1)

V (r, ✓) = W (r) + ⇤4


1� cos

✓
r

f
r

� ✓

f
✓

◆�
, (2)

where ⇤ is a non-perturbatively generated scale and r
and ✓ have dimensions of mass. Notice that in the cosine
we have chosen a particularly simple linear combination.
At the level of the e↵ective action this can be done with-
out loss of generality, since other values of the coe�cients
could be reabsorbed in the definition of f

r

and f
✓

. On
the other hand, in the string theory construction, f

r

and
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“Dante’s Inferno”: [Berg, Pajer & Sjörs ’09]

V � µ4
�

1 + r2 + �4

�
1� cos

�
r

fr
+

�

f�

��
, fr � f� < MP

Veff.(�̃) � m2�̃2 for �̃�MP while r, � < MP

brane-free variant:  
[Ben-Dayan, Pedro & AW: work in progress]



• we can compute the inflaton potential using the 
N=2 gauge theory data, or using the gravity dual:  
 
 
 
the same as for the 5-brane monodromy, where lots 
of extra flux kept the throats open  
 

axion monodromy inflation from fluxes

• if only the inflaton B2 (or C2) keeps the throats open, 
they shrink during inflation, and:

[Dong, Horn, Silverstein & AW ’10]

VN=2(�) � Vgrav. side(�) �
�

F5 � ⇥F5 � �

Vgrav. side(�) �
�

F5 � ⇥F5 � �4/5



• a question arises:  
the flux terms are quadratic - so why not just 
quadratic potentials?  

axion monodromy inflation from fluxes

• this is a general tendency:  
heavy moduli fields & fluxes backreact, and flatten the 
potential - a simple energetic argument: 

[Dong, Horn, Silverstein & AW ’10]

V (�L,�H) = g2�2
L�2

H + m2(�H � �0)2
light 
field

heavy 
field

� V
�
�L,�H,min(�L)

�
=

g2�2
L

g2�2
L + m2

m2�2
0 � const.



• type IIB string theory:  
 
 

axion monodromy inflation from fluxes
[McAllister, Senatore, Silverstein, Wrase & AW: work in progress]

• ɸ2 , ɸ3, ɸ4  terms …  
 
- generically flattening of the potential from adjusting moduli 
and/or flux rearranging its distribution on its cycle - ‘sloshing’, 
while preserving flux quantization [Dong, Horn, Silverstein & AW ’10]

�
d10x

�
|dB|2

g2
s

+ |F1|2 + |F3|2 +
���F̃5

���
2
�

with: F̃5 = dC4 �B2 � F3 + C2 �H3 + F1 �B2 �B2

see also: [Palti & Weigand; Marchesano, Shiu & Uranga;	

              Hebecker, Kraus & Witkowski ‘14]



axion monodromy inflation from fluxes
[McAllister, Senatore, Silverstein, Wrase & AW: work in progress]

• effective 4d action gives ɸ3-potential:

• simple torus example:  
 
 

The flux potential participates in stabilization of the dilaton and the volumes of the

Riemann surfaces. Choosing fluxes appropriately, the ’mirror’ axion-inflaton dependent part

of the flux potential can be either dominant or sub-dominant for volume stabilization, as

we will discuss in more detail below. Clearly, the latter case may potentially lead to further

flattening of the scalar potential due to the adjusting volume moduli. We will discuss a more

complete setup along these lines, and its interaction with volume stabilization in section 4.

2.3 radiative stability

3 UV complete examples I: axions from Neveu-Schwarz

B fields

Next, let us consider some examples of the flattening e↵ect in this case. Again the additional

degrees of freedom should adjust in an energetically favorable way. Perhaps there are some

simple e↵ects like in the B2 ! �p<2 examples from before whose individual e↵ects we can

exhibit.

3.1 IIB example on product manifold and complex structure ad-

justment

Let us work in type IIB string theory, including the |F1 ^B ^B|2 term (see [3]...).

Consider a product of three two-tori, (T 2)3 (perhaps later we will generalize to higher

genus Riemann surfaces). For simplicity take them to be rectangular tori, y1 ⌘ y1 +L1, y2 ⌘
y2 + L2. Denote L2 = L1L2, so the total internal volume V is L6. Put 3-form flux

F3 = Q31dy
(1)
1 ^ dy

(2)
1 ^ dy

(3)
1 + Q32dy

(1)
2 ^ dy

(2)
2 ^ dy

(3)
2 (26)

where the superscript labels the three T 2’s. That is, we have Q31 units of flux on the product

of the three y
(i)
1 cycles and Q32 units of flux on the product of the three y

(i)
2 cycles.

Include quantized 1-form flux in the symmetric configuration

F1 =
Q1

L1

3
X

i=1

dy
(i)
1 (27)

That is, Q1 =
R

dy
(i)
1 F1.

Also include axions

B =
3

X

i=1

b(i)

L2
dy

(i)
1 ^ dy

(i)
2 (28)

8
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axion

fluxes

ds2 =
3�

i=1

L2
1(dy(i)

1 )2 + L2
2(dy(i)

2 )2

B =
3�

i=1

b

L2
dy(i)

1 � dy(i)
2

u =
L2

L1
,

�

MP
=

b

L2

L � M2
P

ḃ2

L4
+ M4

P
g4

s

L12

�
Q2

1L
4

�
b

L2

�4

u + Q2
31u

3 +
Q2

32

u3

�
� �̇2 + µ�3

• use Riemann surfaces: can fix Vol = L6 as well & get  m2ɸ2
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• BICEP2 provides strong evidence for primordial 
tensor modes with r = 0.1 … 0.2  — only large-
field inflation survives …

open questions ...

• axion monodromy provides one avenue for large 
field inflation in string theory - technically natural & 
distinctive predictions ...  

• many powers ɸ2/3  … ɸ4 possible ; we need 
generalizations ... harder look at universality, generic 
distinctiveness from field theory models




