Recent results from the NuSTAR satellite and synergy with Astro-H Greg Madejski

Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC)

Outline:

- High energy astrophysics as a unique window on the sky
- •NuSTAR as a new tools in the sky imaging hard X-ray observatory
- Selected v. recent results from NuSTAR:
 - •Supernova remnants and Cas A
 - •Active galaxies and their black holes
 - •Jet-dominated active galaxies (=blazars)
 - •Galaxy clusters
 - •Recent supernova in the galaxy M82

X-rays and gamma-rays in perspective

- Hard X-ray and γ-ray data often but not always are indicative of non-thermal phenomena
 - -> violent, explosive processes
 - -> extremely energetic particles

The >1GeV Sky:

Thousands of celestial gamma-ray sources of all kinds...

Exploring the hard X-ray sky: Basic facts about NuSTAR

- NASA's Small Explorer mission, launched in June 2012
- Two identical coaligned grazing incidence hard X-ray telescopes:
 - Multilayer coated segmented glass optics
 - Actively shielded solid state CdZnTe pixel detectors
- Extendable mast provides 10-m focal length
- Focussing optics reduces background!
- Energy bandpass 6 80 keV
- Pegasus rocket / satellite in low-Earth orbit
- Performance as good or better than predicted!

CdZnTe detectors: pixel size 0.6 mm (~ 12") Max. count rate: 300 cts/s HEFT heritage

NuSTAR: What is it?

- * NuSTAR is the first satellite-based focusing X-ray telescope operating in the hard X-ray band, 5 – 80 keV
- * Leading institution is Caltech (Fiona Harrison, PI)
- * Launched into a low-Earth, nearly equatorial orbit -> low background
- It is a part of NASA's Small Explorer program

NuSTAR features three key novel technologies:

- Co-aligned multi-coated focusing hard X-ray telescopes: excellent angular resolution will allow surveys at unprecedented sensitivity
- Pixellated CdZnTe detectors: broad bandpass well matched to the telescope reflectivity
- Deployable mast, enabling the ~ 10 m focal length

Launch "on the cheap"

Energy range	3– 80 keV
Angular resolution	50" Half Power Diameter, 7.5" FWHM
ield of View	13 arc min x 13 arc min @ 10 keV
Spectral resolution	1.2 keV at 68 keV
Sensitivity (3σ, 10º Sec)	2 x 10 ⁻¹⁵ erg/cm²/s (6-10 keV) 1 x 10 ⁻¹⁴ erg/cm²/s (10-30 keV)
iming resolution	0.1 millisecond
oO response	< 48 hour
Drbit	6º inclination, 550 x 600 km
lission lifetime	2 years baseline
Drbit lifetime	> 7 years

FIRST DATA ARE NOW PUBLIC AT HEASARC!

http://www.nustar.caltech.edu/for-astronomers/simulations

Figure 9. On-axis detection (4-sigma) and flux measurement sensitivity for several energy bands as a function of integration time.

¹⁰³2x2 degrees simulated NuSTAR image

NuSTAR: key science goals

Tycho SNR

[3]

INTEGRAL observation (top) and NuSTAR simulation (bottom) of the Galactic center 2 × 0.8° region

Objective #1: How are black holes distributed through the cosmos, and how do they affect the formation of galaxies?

Objective #2: How are stellar remnants distributed within the Galaxy and near the Galactic center?

Objective #3: How do stars explode and forge the elements that compose the Earth? (Ti 44 lines, 68/78 keV)

Objective #4: What powers the most extreme, jet-dominated active galactic nuclei? -> blazar monitoring campaigns

Cosmic X-ray Background Spectrum

Supernovae and their remnants

- * Early Universe contained only the lightest elements: hydrogen, helium
- * "Heavy" elements were all "cooked" in stars and ejected into the interstellar space via *supernova explosions*
- * The velocity of the ejecta, *v* is roughly 10,000 km/s
- * How do we know that v is ~10,000 km/s and not say, 100 or 10^5 km/s?
- -> know the age *t* (typically ~ 1000 years) also know the angular size θ , distance *D* -> linear size ~ *D** θ and thus *v* = *D** θ/t
- * Multiple observations of SNR separated by
 ~ years also clearly show the expansion

Composite image of the Kepler's supernova remnant

NuSTAR images of Cas A

Cas A supernova remnant INTEGRAL ISGRI

E>15 keV

NuSTAR Image	
Red :	4.5 – 5.5 keV
Green:	8 – 10 keV
Blue:	10 – 25 keV

Radioactive Titanium

Cassiopeia A: A 2+ Ms Hard X-ray Study

First images used the ~500 ks of NuSTAR exposure

The total NuSTAR exposure is in excess of 2.5 Ms

Final observations to be taken Spring 2014

NuSTAR Cas A Composite Image - Deconvolved with instrument PSF - Overlaid on DSS image

> 3-6 keV 8-10 keV 15-20 keV

Brian Grefenstette et al 2014, submitted

Cassiopeia A: Expectations

⁴⁴Ti Morphology

44 Ti Morphology

Previous Titanium Evidence

Cas-A in numbers:

•Numbers:

- Detection at ~13-sigma* (previous ~4.5-sigma or worse)
- (in 10⁻⁴ M_{sun}) 1.25 +/- 0.3 of ⁴⁴Ti (previously 1.6^{+0.6}_{-0.3})

Radoactive Titanium is...

- ...in the un-shocked interior (in 3-D).
- ...non-uniformly distributed in clumpy ejecta.
- ...redshifted from the rest-frame and Doppler-broadened.
- ...does not trace the Fe

Active galaxies: the "working picture"

- Presumably all AGN have the same basic ingredients: a black hole accreting via disk-like structure
- Some of those active galaxies possess a relativistically boosted jet, so bright that its emission masks the isotropically emitting "central engine"
- Accretion process and jet properties can be studied separately

Diagram from Padovani and Urry

Active galaxies as tools to study _____NuSTAR strong gravity

Spinning black hole in NGC 1365

IC 4329a Suzaku + NuSTAR spectrum: Best-Fitting Model (Comptonization)

