

Measurement of θ_{13} in Neutrino Oscillation Experiments

Stefan Roth, RWTH Aachen Seminar, DESY, 21st/22nd January 2014

Overview

- **Experiments with neutrinos**
- Neutrino oscillations
- Reactor and accelerator neutrino experiments
- Current status and future sensitivities

Two experiments with RWTH participation:

Reactor neutrino experiment Double Chooz Near and far detector at nuclear power plant Chooz (France)

Accelerator neutrino experiment T2K Tokai to Kamioka long baseline neutrino experiment

Discovery of the Neutrino: Project "Poltergeist" (1956)

Nuclear reactors produce a large flux of anti-neutrinos $\bar{\nu}_e$

 β -decays of the fission products of the isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

$$\overline{\nu}_e + p \rightarrow n + e^+$$

Inverse β -decay using delayed coincidences:

Discovery of the Myon-Neutrino: Brookhaven (1960)

Pion beam produces v_{μ} beam

Nobel price 1988

Leon Ledermann

Melvin Schwartz

Jack Steinberger

Myon track starts within spark chamber

Discovery of Neutrino Oscillations

R. Davis

M. Koshiba

Nobel price 2002

 $\cos \theta$

Mixing of mass and flavor states

Production/detection:

$$\nu_e, \nu_\mu, \nu_ au$$

Propagation:

$$\nu_1, \nu_2, \nu_3$$

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$$

 $\alpha = e, \mu, \tau$
 $i = 1, 2, 3$

Unitary rotation of states with

3 mixing angles: θ_{12} , θ_{23} , θ_{13}

1 CP violating phase: δ_{CP}

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix: $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} M$$

$$\begin{pmatrix} c_{12} & s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"Atmospheric" $\theta_{23} \approx 45^{\circ}$

"Reactor" $\theta_{13} \approx 10^{\circ}$

"Solar" $\theta_{12} \approx 32^{\circ}$ Majorana phases

Oscillation parameters

(other possibility: inverted mass hierarchy)

Neutrino Oscillations (3 Masses)

Survival probability $P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$:

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + f\left(\sin^2 \frac{\Delta m_{21}^2 L}{4E}\right)$$

$$\Delta m_{31}^2 \approx \Delta m_{32}^2 = 2.3 \cdot 10^{-3} \text{ eV}^2 \gg \Delta m_{21}^2 = 7.5 \cdot 10^{-5} \text{ eV}^2$$

Neutrino Oscillations (3 Masses)

Appearance probability $P(\nu_{\mu} \rightarrow \nu_{e})$:

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} + f\left(\sin^{2} \frac{\Delta m_{21}^{2} L}{4E}\right)$$

Here also neglected: Terms with δ_{CP} , Terms due to matter effects

New Reactor Neutrino Experiments

DayaBay:

- Located at Daya Bay
 Nuclear Power Plant in China
- 6 x 2.9 GW_{th} nuclear reactors
- 6 neutrino detecors
 3 near (520 m from reactors)
 3 far (1650 m from reactors)

RENO:

- Located at Yonggwang
 Nuclear Power Plant in Korea
- 6 x 2.8 GW_{th} nuclear reactors
- 2 neutrino detecors
 1 near (294 m from reactor)
 1 far (1383 m from reactor)

The Double Chooz Experiment

Design of the DoubleChooz Detectors

Onion like structure to shield against backgrounds

Outer Veto:

Plastic scintillator

Steel Shielding (17 cm)

Inner Veto (steel vessel):

80 m³ liquid scintillator, 80 PMT

Buffer (steel vessel): 100 m³ oil

390 PMT (10 inch) observing the target

Gamma Catcher (acylic vessel):

22.6 m³ liquid scintillator no Gd

Target (acrylic vessel):

10.3 m³ liquid scintillator + 0.1% Gd

Detector Vessels before Closing

Selection of Neutrino Candidates

Coincidence Cut:

 $2 \mu s < \Delta T < 100 \mu s$

Prompt-delay time difference

Selection of Neutrino Candidates

Energy Cut:

 $0.7 \text{ MeV} < E_{\text{prompt}} < 12.2 \text{ MeV}$

 $6.0 \text{ MeV} < E_{\text{delayed}} < 12.0 \text{ MeV}$

Rate of Neutrino Candidates

~36 neutrino candidates per day ~1 background event per day

Neutrino rate

Neutrino Rate (day⁻¹)

- In total 8249 candidates survive the cuts (no background subtraction)
- Good correspondence to reactor power history
- Indicates low background level in detector

Backgrounds

Accidental background

Correlated background

Prompt:

environmental gamma-ray

Delayed:

neutron induced by muon

Prompt:

proton recoils from neutron

Delayed:

neutron capture on Gd

Cosmogenics: ${}^{9}\text{Li}/{}^{8}\text{He}$ from $\mu\text{-induced spallation}$ β – n emitters, mimic the v-signal

Background Estimation

- Unique opportunity to measure backgrounds in-situ with both reactors off ~7,5 days of reactor OFF-OFF data
- background event rate are consistent with background calculation
 → waiting for more reactor OFF-OFF periods ...

Oscillation Analysis

Oscillation depends on neutrino energy:

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E}$$

Rate & shape analysis yields

$$\sin^2 2\theta_{13} = 0.109 \pm 0.030 \text{ (stat)} \pm 0.025 \text{ (syst)}$$

using $\Delta m_{31}^2 \approx \Delta m_{32}^2 = 2.32 \cdot 10^{-3} \text{eV}^2 \text{ (MINOS)}$

Together with results from DayaBay and RENO:

$$sin^2 2\theta_{13} = 0.095 \pm 0.010$$
 (PDG 2014)

New Accelerator Neutrino Experiments

NOvA: <u>Numi Off-Axis v_e Appearance Experiment</u>

Start planned for 2014

A broad physics scope

Using $\nu_{\mu} \rightarrow \nu_{e}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$...

- Measure θ₁₃ via ν_e appearance
- Determine the v mass hierarchy
- Search for v CP violation
- Determine the θ_{23} octant

Using $\nu_{\mu} \rightarrow \nu_{\mu}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$...

- Atmospheric parameters: precision measurements of θ_{23} , $|\Delta m_{\text{atm}}^2|$. (Exclude θ_{23} = $\pi/4$?)
- Over-constrain the atmos. sector (four oscillation channels!)

Also ...

- Neutrino cross sections at the NOvA Near Detector
- Sterile neutrinos
- Supernova neutrinos
- Other exotica

Ryan Patterson, Caltech

The T2K Experiment (Tokai To Kamioka)

Data taking since 2010

Japan Proton Accelerator Research Center J-PARC

J-PARC: Joint project between KEK and JAEA

Off Axis Neutrino Beam

Neutrinos at 2.5° off-axis:

- Intense narrow energy band
- Energy maximum tuned to oscillation maximum at $\sim 0.6~\text{GeV}$

Off Axis Neutrino Beam

E_v (GeV)

Charge Current (CC) processes:

• Quasi Elastic (QE): $v_{\mu}n \rightarrow \mu^{-}p$

• Resonant (RES): $v_{\mu}n \rightarrow \mu^{-}\pi^{+,0}N$

• Deep Inelastic (DIS): $\nu_{\mu}N \rightarrow \mu^{-}X$

Neutrinos at 2.5° off-axis:

- Enhances CCQE fraction
- Reduces associated pion production

Neutrino Monitor

Near Detector 280m (ND280)

Inside 0.2 T UA1/NOMAD magnet:

- The π^0 detector POD (lead/water/scintillators)
- Barrel and downstream ECAL
- Fine Grain Detectors FGD (water/scintillators)
- Time Projection Chambers TPC

(large gas volume with micromegas readout)

Magnet Moving System

Opening and closing of 900 t UA1 magnet yokes Adaption of HERA-B guide rollers to the UA1 magnet carriage Re-use of ZEUS hydraulic movers

Many thanks to DESY!

ND280 Event Gallery

Measurement of ν_{μ} flux at ND280

Basic CC event selection at ND280 for ν_{μ} :

- Use the highest momentum, negative charged TPC track
- Select muon from TPC particle ID

Measurement of spectrum and flux of ν_{μ} neutrinos at ND280 yields prediction for ν_{μ} flux at SK

Super Kamiokande

Super-Kamiokande is a 50,000 ton water Cherenkov detector, with 11,000 photomultiplier tubes, which started observation in 1996 after 5 years of construction

π^0 Background at Super-K

Important Background:

- Neutral Current process $v_{\mu} p \rightarrow v_{\mu} p \pi^0$
- Pion decay $\pi^0 \to \gamma \gamma$
- Photon conversion $\gamma \to e^+e^-$ with two overlapping electron-like rings
- Build likelihood ratio from two fits

Likelihood ratio vs. π^0 mass

Selection of v_e Appearance Candidates

 \rightarrow Observation of 28 ν_e candidates in 6.4 \cdot 10²⁰ pot

Appearance of v_e

First v_e candidate observed (May 2010)

Protons delivered

March 11, 2011

Great Eastern Japan Earth quake

Successful startup and running \rightarrow Reached $\sim \! 10\%$ of the final design goal of $8 \cdot 10^{21} pot$

Development of Data

- Runs 1-2: $1.4 \cdot 10^{20}$ pot
 - \rightarrow Indication of ν_e appearance with 2.5 σ (6 candidates)
- Runs 1-3: $3.0 \cdot 10^{20}$ pot
 - \rightarrow Evidence of ν_e appearance with 3.1σ (11 candidates)
- Runs 1-4: $6.4 \cdot 10^{20}$ pot
 - \rightarrow Observation of ν_e appearance with 7.3 σ (28 candidates)

Predicted Number of Events

 $6.4\cdot 10^{20}\ pot$

Event type	$sin^2 2\theta_{13} = 0$	$sin^2 2\theta_{13} = 0.1$
$ u_e$ signal	0.4	16.4
$ u_e$ backg.	3.2	2.9
$ u_{\mu}$ backg.	0.9	0.9
Other backg.	0.2	0.2
Total	4.6	20.4

Constraint from near detector very important!

Expected number of signal+background events

ınit

arbitrary unit

Fit to the Data

Likelihood is calculated by comparing the number of observed events (N_{obs}) and the electron momentum & angle (p- θ) distribution with MC.

Assuming $\delta_{\mathit{CP}} = 0$ and normal hierarchy

$$\Rightarrow \sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$$

No oscillation hypothesis is excluded at 7.3σ

Interpretation of v_e data

With current $\sin^2 2\theta_{13}$ value:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx 0.051 - 0.014 \sin \delta_{CP}$$

Allowed region of $\sin^2 2\theta_{13}$ for each value of δ_{CP}

 \rightarrow Sensitivity to CP violating phase δ_{CP} :

For normal mass hierarchy ($\Delta m_{32}^2 > 0$)

$$0.35 \, \pi < \delta_{CP} < 0.63 \, \pi$$

for inverted mass hierarchy ($\Delta m_{32}^2 < 0$)

$$0.09 \, \pi < \delta_{CP} < 0.90 \, \pi$$

are excluded at 90% C.L.

Constraint from reactor neutrinos:

$$\sin^2 2\theta_{13} = 0.098 \pm 0.013$$
 (PDG 2012)
They measure $\sin^2 2\theta_{13}$ independent from δ_{CP} and hierarchy

Future Prospects

T2K 90% C.L. regions for true $\delta_{CP}=-90^{\circ}$, $\sin^2 2\theta_{13}=0.1$, normal hierarchy

→ Scheduled a pilot run with anti-neutrinos in 2014

Combination with NOvA

Region where evidence for CP violation can be found at the 90% C.L.

Conclusions

- Physics of neutrino oscillations is a very active field
- Several new experiments have started (will start soon):
 - Reactor neutrino experiments DoubleChooz, Reno, DayaBay
 - Neutrino beam experiments T2K, Nova (2014)
- Measurement of θ_{13} has been established
- T2K has observed v_e appearance, hence shows for the first time neutrino flavour transistion directly
- Combination of all neutrino experiments could resolve:
 CP-violation in leptonic sector (maybe mass hierarchy)