The Higgs boson in the fermionic decay modes with the CMS experiment at LHC

Andrea Rizzi, INFN e Universita' di Pisa

January 29th 2014, DESY

Outline

- Higgs search overview
- ► The Higgs to BB modes:
 - ▶ VH
 - ▶ VBF
 - ▶ ttH
- The Higgs to τ pairs
- MSSM and fermionic modes
- Some ideas for next runs

The CMS experiment

LHC 2011 & 2012

CMS Integrated Luminosity, pp

Higgs overview

125

126

127

m_x (GeV)

-1

-2 L 0

0.5

1

1.5 κ_V

5

0.5

0.0

124

Best fit σ/σ_{SM}

2.5

02/03/14

 $H \rightarrow ZZ$

 $\mu = 0.68 \pm 0.20$

 $\mu = 0.92 \pm 0.28$

0

0.5

1

The cross sections

- sizable BR, giving us a chance to make a measurement
- Despite the large BR, $H \rightarrow bb$ is studied only in associate productions that significantly reduce the σ x BR 6

Summary of SM measurements

Backgrounds production cross sections are about 3-4 orders of magnitude above signal (before any analysis cuts)

Resonance peak in bb and ττ is not "narrow" (as for photon and Z) 02/03/14

VH, H->bb

$VH \rightarrow II, Iv, vv + bb$

CMS

Lumi section: 134

- Associated production of Higgs to a vector boson
 - Several modes considered:
 - **W-**>lν (e, μ, τ)
 - Z-> νν
 - Z->ll (electrons or muons)
- Decay of the Higgs boson in bb
 - Use b-tagging to identify the jets coming from the Higgs decay
- Main backgrounds
 - \rightarrow V+(b)jets, ttbar, single top, WW/WZ/ZZ
- Trigger with the lepton(s) from the W/Z and/or MET+jets

Backgrounds

Reducible backgrounds

QCD, V+udscg ("light" jets) ttbar and single top => reduced with b-tag, jet counting, additional leptons, lepton isolation

Less reducible backgrounds V+bb ZZ(bb), W(lv)Z(bb) => bb mass is the only handle

10

Other important observables used in the analysis

MET, MET significance, MinDeltaPhi (Jet, MET)

DeltaPhi(W/Z,H)

Jet energy regression

- The dijet mass is the most discriminating variable
- Its resolution depends on jets resolution
- b-jets are not like light jets
 - Presence of leptons and neutrinos
 - More massive (hence broader)
 - They can be "Tagged" with lifetime and secondary vertices
- Use a BDT regression in order to correct the jet energy exploiting jet and b-tag variables
 - ~ 15% improvement in mass resolution

Jet energy regression

The regression technique has been validated on data

- pT balance in a Z+2b jets sample (Z->ll)
- Top mass in a top enriched region
- In both cases the observed improvements matches the MC expectations

Analysis strategy

Multivariate analysis

- 2/3 categories per channels based on pT Z/W
- Loose preselection on b-tag and kinematics
- Intermediate BDT to better discriminate between different backgrounds
- Final BDT for shape fitting
- Shape uncertainties as templates from input systematic uncertainties

Cross check analysis

- 2/3 categories per channels based on pT Z/W
- Tighter selection on b-tag
- Invariant mass shape fit
- Shape uncertainties as templates from input systematic uncertainties
- Combined mass plot with S/B category weighting

Control Regions – Background Normalization

0.05

Events

Data/MC

- For each channel several control regions defined
- Shapes of all variables tested data vs MC
- Scale Factors for yields normalization
 - Used as starting value (with uncertainty) for nuisance parameters in the final fit
 - Only V+1b seem to be really mis-predicted by the MC

Scale Factors

Process	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$
High $p_{\rm T}({\rm V})$			
W + udscg	$1.04 \pm 0.01 \pm 0.07$	-	$0.93 \pm 0.02 \pm 0.03$
W + b	$2.46 \pm 0.33 \pm 0.22$	-	$2.12 \pm 0.22 \pm 0.10$
$W + b\overline{b}$	$0.77 \pm 0.25 \pm 0.08$	-	$0.71 \pm 0.25 \pm 0.15$
Z + udscg	-	$1.11 \pm 0.04 \pm 0.06$	$1.17 \pm 0.02 \pm 0.08$
Z+b	-	$1.59 \pm 0.07 \pm 0.08$	$2.13 \pm 0.05 \pm 0.07$
$Z + b\overline{b}$	-	$0.98 \pm 0.10 \pm 0.08$	$1.12 \pm 0.04 \pm 0.10$
tt	$1.00 \pm 0.01 \pm 0.11$	$1.10 \pm 0.05 \pm 0.06$	$0.99 \pm 0.02 \pm 0.03$

Control Regions - BDT

Reliability of BDT from control regions

- Correlations of input variables
- Correlation of BDT output with input variables (e.g. *mass* vs BDT)
- Output distribution of the BDT
- All data vs MC checks show excellent agreement

BDT output in signal region

- Each decay mode has an independently trained BDT
- To increase the sensitivity the analysis is divided into two pT bins and a low b-tag category is added
- The final result is obtained from a global fit with correlated nuisances

VH MVA Results

Mjj Analysis

While the main analysis is based on a BDT, a Cross-check analysis is implemented as *a shape analysis* on the dijet invariant mass selecting high S/B with:

- \rightarrow Exploit the boost (pt binning)
- \rightarrow Double asymmetric b-tagging
- \rightarrow Topology: b2b, jet veto \rightarrow QCD rejection

Variable	$W(\mu\nu)H$	W(ev)H	$Z(\ell \ell)H$	$Z(\nu\nu)H$	
$m_{\ell\ell}$	-	-	$75 < m_{\ell\ell} < 105$	-	
рт(ј1)	> 30	> 30	> 20	> 60 (> 60, > 80)	2
$p_T(j_2)$	> 30	> 30	> 20	> 30	ź
<i>р</i> т(jj)	> 100	> 100	-	> 110 (> 140, > 190)	ñ
$p_{\rm T}({\rm V})$	100 - 130(130 - 180 > 180)	[100 - 150](> 150)	[50 - 100]([100 - 150]) > 150)		Ď
CSV1	CSVT	CSVT	CSVM	CSVT	2
CSV2	> 0.5	> 0.5	> 0.5	> 0.5	D
$\Delta \phi(V, H)$	> 2.95	> 2.95	- / {	> 2.95	D
$\Delta R(jj)$	-	-	-(-, < 1.6)	- 4	Ē
N_{ai}	= 0	= 0			נ
N_{al}	= 0	= 0	<u> </u>	= 0	Ś
E_{T}^{miss}	> 45	> 45	< 60.	[100 - 130] ($[130 - 170]$, > 170)	
$\Delta \phi(\text{pfMET}, J)$	-	-	\ < -	> 0.7 (> 0.7, > 0.5)	
$\Delta \phi(\text{pfMET}, \text{trkMET})$	-	-		< 0.5	
$\Delta \phi(\text{pfMET}, \text{lep})$	$< \pi/2$	< π/2		\setminus -	
		\sim			

sig = 1.1 std. dev.

Mu = 0.8 + 0.7 - 0.7

VBF, H->bb

VBF Hbb

- The well known VBF signature consists in an additional pair of forward-backward jets
- ▶ In the case of VBF,H->bb the final state is fully hadronic
 - Very large QCD background
- The discrimination is based on b-tag, rapidity gap and invariant mass of the light jets

Analysis strategy

Combine all discriminating variables into an MVA output

- Do not use variables that correlates with Mbb
- Categorize events based on the MVA output

The MVA also separates gg->H from VBF H

Fit a peaking signal on a smooth background

Inputs to the MVA:

- eta separation between the btag sorted qq jets.
- eta separation difference between the b-tag and eta sorted qq jets.
- invariant mass of the b-tag sorted qq jet pair
- average eta of the b-tag sorted qq jet pair system.
- CSV b-tagging output for the most b-tagged jet.
- SV b-tagging output for the second most b-tagged jet.
- quark/gluon discriminator for the third b-tagged jet.
- quark/gluon discriminator for the least b-tagged jet.
- eta of the third b-tagged jet.
- scalar pT sum of the additional "soft" Track-Jets with pT > 1 GeV.
- angular variables

Probability Density

0.06

0.05

0.04

0.03

0.02

0.01

-0.2

0.2

0

0.4

0.6

0.8

1

ANN Output

1.2

Fit in the bb invariant mass

- The mass fit is performed using generic templates (Bernstein polynomials) for the background
- The signal template shape is tuned on the MC (xtalball plus Bernstein)
- Reliability of the fit (bias, linearity) tested using different models and different signal injections
- Non QCD backgrounds templates taken from MC

Z+jets cross check

- A cross check of the fitting machinery has been done without the MVA, targeting the Z+jets
- Excess due to Z correctly fitted on top of the very large background

VBF preliminary results

- The first measurement at LHC of the VBF, H->bb is compatible with expectations
- Limits between 2 and 3 x SM were expected
- The observed value is compatible with the expectations for the 125 GeV Higgs boson

@125 GeV Sig = 0.5 std. dev. (0.7 exp) Mu = 0.7 + 1.4 – 1.4

A combination with VH result is also performed

ttH (H->bb)

ttH, H to bb

- Two modes studied: semi-leptonic and dileptonic
- Signal to background ratio rapidly increasing with
 - Total number of jets (expect 6 or 4 jets in final state)
 - Number of b-tagged jets (4 b in final state)
- Analysis categorized per Njets,Ntags
- Low Njets,Ntags useful for backgrounds normalization
- High Njets,Ntags are the signal region
- tt+bb background is basically irreducible

ttH, H to bb

Several mildly discriminating variables

Use BDT to combine

An "Higgs mass" only defined in many jets/tags cat.

ttH (Hbb and Hττ)

- Updated result with full 2012 luminosity presented in combination with ttH $\rightarrow \tau\tau$
- Sensitivity to 3-8 times the SM
- Slight excess observed, compatible with SM Higgs at 125GeV

- All τ decay modes covered
 - had+had 42%
 - ▶ e/mu+had ~23%
 - **>** e+mu 6%
 - ee/mumu 3%
- Production mechanism separated with
 - 0/1/2 jets and VBF cuts
 - WH / ZH final state with additional e/mu

- Hadronic τ reconstructed with Particle Flow algorithms
 - 1 prong
 - 1 pront + pi0
 - 3 prongs

- Several regions defined in order to
 - Control backgrounds
 - Increase sensitivity
 - Distinguish different production mechanism
- E.g. EWK background controlled requiring large

		0-jet	1-jet		2-jet	
				p _T π > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	p _T ^π > 100 GeV m _{jj} > 700 GeV ∆ŋ _{jj} > 4.0
	p _T th > 45 GeV	high-p _T ^{τh}	high-p _T ^π	high-p _T th boosted	loose	tight VBE tag
μτ _h	baseline	low-p _T ^{τh}	low-	·p _T ^π	VBF tag	(2012 only)
	p _T th > 45 GeV	high-p _T ^{τh}	- high-p₁ m	high-p _⊤ ™ boosted	loose	tight VBE tag
θτ _h	baseline	$low-p_T^{ au h}$	low-	·ρ _T ^π	VBF tag	(2012 only)
			$E_{\mathrm{T}}^{\mathrm{miss}} > 30$	GeV		
	p ₇ ⊔ > 35 GeV	high-p _T ^µ	high	-p _T u	loose	tight VBE tag
θμ	baseline	low-p _T µ	low-p _T ^µ		VBF tag	(2012 only)
	р _т і > 35 GeV	high-p _T I	high	ι-p _T l	0	iot
ΘΘ, μμ baseline		low-p _T I	low-p _T l		Z-J U L	
T _h T _h (8 TeV only)	baseline		boosted	highly boosted	VBI	⁼ tag
			p _T π > 100 GeV	ρ _τ π > 170 GeV	p _T π > 100 GeV m _{ji} > 500 GeV Δη _{jj} > 3.5	

Hadronic τ reconstruction

- τ reconstruction in CMS is based on Particle Flow techniques
 - Exploit combined information of tracker, calorimeters, muon det.
 - Typical performance for hadronic τ:
 - 60% efficiency
 - 1% fake rate (Jets)
- Visible τ mass used to validate MC energy scale
 - Testing on $Z \rightarrow \tau \tau$ sample
 - Agreement to 3% level

Di-τ mass reconstruction

- Dedicated algorithm used to reconstruct the invariant mass
 - Presence of neutrinos spoils the resolution of the "visible mass"
 - Use MET and τ decay products kinematic variables in a dedicated (SVFIT) algorithm
 - better response and resolution
 - Better separation of Higgs from Z

2σ

3σ

4σ

5σ

140

m_µ [GeV]

Results in dilepton final state

- Fit di-τ mass in all modes but in ee and mumu (BDT instead)
- Excess of events near 120 GeV
- Compatible with 125GeV Higgs boson

10-7

10-8

eμ, eτ_b, μ τ_b, τ_hτ_h, μμ, ee

100

120

Combining τ and B

- A combination of the most sensitive Hbb and Hττ channels has been prepared
- Measured fermion coupling

t and B	HOT	OFF TI	HE PRESS
Channel	Significa	Best-fit	
($m_{\rm H}=125{\rm GeV}$)	Expected	Observed	μ
$VH \to b\bar{b}$	2.3	2.1	1.0 ± 0.5
${ m H} ightarrow au au$	3.7	3.2	0.78 ± 0.27
Combined	4.4	3.8	0.83 ± 0.24

MSSM (Hbb)

ln MSSM at high $tan(\beta)$

- The associated b-production is enanched
- The decay to τ and b is favoured
- \blacktriangleright Dedicated H \rightarrow bb search with pure QCD background

MSSM ($H\tau\tau$)

Same search for H $\rightarrow \tau \tau$

Including 2011 and 2012 data

- Use additional jet with b-tag category to increase S/B
- Large MSSM phase space excluded

1000

m_A [GeV]

95% CL Excluded: observed SM H injected

> expected \pm 1 σ expected $\pm 2\sigma$ expected

LEP

400

Ideas and challenges for next runs

What's next? Is the game over? (of course not!)

- Now that we know that this new particle exists and we know that it mostly decays to fermions we can use it as a probe for new physics (this is doable, and being done, with run1 data)
 - Search the $H \rightarrow bb$ or $H->\tau\tau$ resonance in SUSY final state
 - Search resonances of X->HH (w/ final state 4b, ττbb, γγbb...)
 - Search for $H \rightarrow bb$ in high pt jets (boosted search, subjets techniques)
- Precision measurement of SM Higgs and measurement of self coupling with larger datasets
 - Preparation for next run (300/fb,14TeV)
 - Boosted scenarios
 - 🕨 Larger PU
 - Higher energies
 - Longer term (3000/fb)

Conclusions

- The Higgs to b-quarks decay is being studied in at least three different channels
 - **b** Best sensitivity in VH ~ 2σ
 - CMS recently added VBF to the family of Hbb studies
- Higgs to τ pairs studied in all production modes
 - Combined result well above 3σ sensitivity
- Combined fermion search is well compatible with Standard Model Higgs-to-fermions coupling (0.83+-0.24)
- A lot of road ahead to achieve precision measurements and using the freshly discovered particle as a "tool" to search for new physics

Back up

Are we ready for the 100/fb and above?

What we may need from theorists:

- Background uncertainties are probably more relevant than those on the signal
 - ..but a precise understanding of the pt spectrum for VH is needed
- tt+jj and tt+bb backgrounds are important for ttH
 - In particular the "tt+1b" (gluon splitting with 1 soft or collinear b) has large uncertainties
- We would benefit from more studies of NLO generators and gluon splitting tuning in generators (in general, not just in tt+b)
- The 1b and/or small angle regions showed disagreement in recent measurement from Atlas and CMS

Are we ready for the 100/fb and above?

Luminosity scaling

- In VH, S/B is at most ~ 1/6
- MC predictions becoming systematically limited?
 - More stat in the sidebands
 - Less extrapolations
 - Use generic templats (smooth shapes) instead of MC shapes
- 450M MC events used for 20/fb, we cannot produce a factor of 10 more....

Scaling with sqrt(s) and PU

ttbar xsec grows faster than VH xsec!

- Already seen in 7->8 TeV
- Z->nunu & W->ln have large ttbar background
- "additional jets" used to cut ttbar are affected by PU
- Z->ll on the other hand stays clean
- ttH xsec grows faster than ttbar
 - ttH should increase the sensitivity

▶ VBF, H->bb

- More rapidity gap for the tag jets
- ...but also more QCD
- Trigger becoming really a challenge?

And how about substructures?

- Jet merging really happens only for pT > 400 GeV
- No benefit from substructure in current regime (jets are always well separated)
 - The few GeV resolution seen at 200 GeV in theory papers is not there in full simulation studies
- On the other hand, at 13 TeV
 - Larger number of high boost events
 - The fraction of merged jets could be significant
 - Substructure are likely need in the high boost regime

- Triggers are mostly based on the W/Z
 - i.e. leptons and MET
- Higgs decay product (di-jets or even btag) are only exploited for the medium-low pT region of ZH->nunubb
- All efficiencies are data driven (turn-on curves from prescaled triggers)

Mode	L1 Seed	HLT Trigger
W(μν)Η	SingleMu16(er)	IsoMu24(_eta2p1)
	SingleMu16(er)	Mu40 (_eta2p1)
	SingleMu16(er)	IsoMu20(_eta201)_WCandPt80
Z(µµ)H	SingleMu16(er)	IsoMu24(_eta2p1)
	SingleMu16(er)	Mu40(_eta2p1)
W(ev)H	SingleEG20 OR 22	Ele27_WP80
Z(ee)H	DoubleEG137	Ele17_CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL
		_Ele8_caloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL
Z(νν)Η	l1_etm36 or l1_etm40	HLT_PFMET150
	l1_etm36 or l1_etm40	HLT_DiCentralPFJet30_PFMHT80 For 2012A
	L1_ETM36 OR L1_ETM40	HLT_DiCentralJetSumpT100_dPhi05_
		DiCentralPFJet60_25_PFMET100_HBHENoiseCleaned For 2012B-C-D
	ll_etm36 or ll_etm40	DiCentralJet20_CaloMET65_BTagCSV07_PFMHT80 For 2012A
		DiCentralPFJet30_PFMET80_BTagCSV07 For 2012B-C-D
$W(\tau \nu)H$	L1_ETM36 OR L1_ETM40	LooseIsoPFTau35_Trk20_Prong1_MET70

Analysis strategy

- Each mode (ll,lnu,nunu) has a dedicated analysis optimization, but the overall schema is common
 - Categorize the analysis in pT bins (3 bins with boundaries optimized in each analysis, typically around 100~200 GeV)
 - Use a jet energy regression to improve the signal shape
 - Estimate the backgrounds in control regions
 - Train an MVA with all discriminating variables (including the mass)
 - Shape fit on the MVA output
- As cross check also a non MVA analysis has been performed
 - Keep pT categories
 - Cut based selection on b-tag and few other variables
 - Use di-jet mass for the shape fit

Multi BDT

- Use 3 dedicated BDT to categorize the events
- Glue together the "overall BDT" for the 4 resulting categories

Control Regions – Scale Factors

- For each channel several control regions defined
- Shapes of all variables tested data vs MC
- Scale Factors for yields normalization
 - Used as starting value (with uncertainty) for nuisance parameters in the final fit

Scale Factors

Process	$W(\ell v)H$	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$	$Z(\nu\nu)H$
Low p_T	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.88 \pm 0.01 \pm 0.03$	$1.00 \pm 0.02 \pm 0.01$	-	-	$0.89 \pm 0.01 \pm 0.03$	$0.96 \pm 0.06 \pm 0.03$
Wbb	$1.91 \pm 0.14 \pm 0.31$	$2.00 \pm 0.15 \pm 0.10$	-	-	$1.36 \pm 0.10 \pm 0.15$	$1.30 \pm 0.17 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.06 \pm 0.03 \pm 0.07$	$0.87 \pm 0.01 \pm 0.03$	$1.15 \pm 0.07 \pm 0.03$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.04 \pm 0.05 \pm 0.08$	$0.96 \pm 0.02 \pm 0.03$	$1.12 \pm 0.10 \pm 0.04$
tŦ	$0.93 \pm 0.02 \pm 0.05$	$1.07 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$0.95 \pm 0.04 \pm 0.10$	$0.97 \pm 0.02 \pm 0.04$	$1.05 \pm 0.07 \pm 0.03$
High p _T	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.79 \pm 0.01 \pm 0.02$	$0.94 \pm 0.02 \pm 0.01$	-	-	$0.78 \pm 0.02 \pm 0.03$	$0.95 \pm 0.05 \pm 0.02$
Wbb	$1.49 \pm 0.14 \pm 0.19$	$1.72 \pm 0.16 \pm 0.08$	-	-	$1.48 \pm 0.15 \pm 0.20$	$1.27 \pm 0.18 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.06 \pm 0.03 \pm 0.07$	$0.97 \pm 0.02 \pm 0.04$	$1.04 \pm 0.07 \pm 0.02$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.04 \pm 0.06 \pm 0.08$	$1.08 \pm 0.09 \pm 0.06$	$1.15 \pm 0.10 \pm 0.04$
tī	$0.84 \pm 0.02 \pm 0.03$	$0.98 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$0.95 \pm 0.04 \pm 0.10$	$0.97 \pm 0.02 \pm 0.04$	$1.03 \pm 0.07 \pm 0.03$

Systematic uncertainties VHbb

- The limit & significance are extracted with a shape analysis
- Systematic uncertainties are handled as nuisance parameters
- Where applicable a shape uncertainty is taken
 - B-tagging (doing discriminator re-shaping)
 - JEC/JER (variation within quoted uncertainties)
 - Background models (different generators)
 - Signal pt-spectrum (NNLO QCD and NLO EWK)
 - Trigger (measured turn-on uncertainties)
 - MC normalization (control region SF uncertainties)
 - Diboson and single top yields (xsec uncertainty)
- Different choices of nuisance parameterization tested to verify robustness of the shape analysis
- No particular concerns from post-fit nuisance pulls

Systematics ttH

Dominant systematics:

tt+bb normalization

B-tag shape uncertainties

Jet Energy Scale

Uncertainties of the sum of $t\bar{t}$ +lf, $t\bar{t}$ +b, $t\bar{t}$	$+ b\overline{b}$, and	$t\bar{t} + c\bar{c}$ events with ≥ 6 jets and ≥ 4 b-tags
Source	Rate	Shape?
QCD Scale (all $t\bar{t}+hf$)	35%	No
QCD Scale $(t\bar{t} + b\bar{b})$	17%	No
b-Tag bottom-flavor contamination	17%	Yes
QCD Scale $(t\bar{t} + c\bar{c})$	11%	No
Jet Energy Scale	11%	Yes
b-Tag light-flavor contamination	9.6%	Yes
b-Tag bottom-flavor statistics (linear)	9.1%	Yes
QCD Scale $(t\bar{t}+b)$	7.1%	No
Madgraph Q^2 Scale $(t\bar{t} + b\bar{b})$	6.8%	Yes
b-Tag Charm uncertainty (quadratic)	6.7%	Yes
Top $p_{\rm T}$ Correction	6.7%	Yes
b-Tag bottom-flavor statistics (quadratic)	6.4%	Yes
b-Tag light-flavor statistics (linear)	6.4%	Yes
Madgraph Q^2 Scale (t $\overline{t} + 2$ partons)	4.8%	Yes
b-Tag light-flavor statistics (quadratic)	4.8%	Yes
Luminosity	4.4%	No
Madgraph Q^2 Scale $(t\bar{t} + c\bar{c})$	4.3%	Yes
Madgraph Q^2 Scale (tt+b)	2.6%	Yes
QCD Scale $(t\bar{t})$	3%	No
$\mathrm{pdf}\left(gg ight)$	2.6%	No
Jet Energy Resolution	1.5%	No
Lepton ID/Trigger efficiency	1.4%	No
Pileup	1%	No
b-Tag Charm uncertainty (linear)	0.6%	Yes

VH, H to bb

Associated production of Higgs to a vector boson

- Several modes considered:
 - W->lnu (electron or muon)
 - Z-> nunu
 - Z->ll (electrons or muons)
- Decay of the Higgs boson in bb
 - Use b-tagging to identify the jets coming from the Higgs decay
- Backgrounds:
 - V+b-jets, ttbar, single top, VV
- Trigger with the lepton(s) from the V and/or MET

A ZH->IIbb event candidate

Multi-Variate Analysis

- Apply loose preselection cuts and let and MVA increase the S/B
- Use a dozen input variables to train a Bosted Decision Tree
- Optionally train different BDTs for different backgrounds and split the final BDT in different regions

Preselectio	n cuts			BDT Input variables
Variable	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$	Variable
$m_{\ell\ell}$	-	[75 - 105]	-	variable
$p_{\rm T}(j_1)$	> 30	> 20	> 60	p_{Tj} : transverse momentum of each Higgs daughter
$p_{\mathrm{T}}(j_2)$	> 30	> 20	> 30	<i>m</i> (jj): dijet invariant mass
$p_{\rm T}(jj)$	> 120	-	> 130	$p_{\rm T}(jj)$: dijet transverse momentum
m(jj)	< 250	[80 - 150] (< 250)	< 250	$p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$)
$p_{\rm T}({ m V})$	[120 - 170] (> 170)	[50 - 100] (> 100)	-	CSV _{max} : value of CSV for the Higgs daughter with largest CSV value
CSV _{max}	> 0.40	> 0.50 (> 0.244)	> 0.679	CSV value of CSV for the Higgs daughter with second largest CSV value
CSV _{min}	> 0.40	> 0.244	> 0.244	$\Delta \phi(V \mathbf{I})$, azimuthal angle between V (or \mathbf{T}^{miss}) and dijet
CSV ^{loose}	-(< 0.40)	-	-(< 0.244)	$\Delta \phi(\mathbf{v}, \mathbf{H})$: azimutnai angle between \mathbf{v} (or E_{T}^{-1}) and dijet
N _{al}	= 0	_	= 0	$ \Delta \eta(\mathbf{jj}) $: difference in η between Higgs daughters
$E_{\rm T}^{\rm miss}$	> 45 (elec)	-	[130 - 170] (> 170)	$\Delta R(jj)$: distance in η - ϕ between Higgs daughters
$\Delta \phi(\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})$	-	-	> 0.5	N _{ai} : number of additional jets
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}(\mathrm{trks})})$	_	-	< 0.5	$\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$)
$\Delta \phi(V, H)$	_	-	> 2.0	$\Delta \theta_{\text{pull}}$: color pull angle [35]

Control regions

- Cotrol regions are defined with several purpose:
 - Adjust MC prediction of main backgrounds (V+light,V+b,ttbar)
 - Verify BDT input variables distributions
 - Verify BDT input variable correlations
 - Verify BDT output distribution in signal free/depleted phase space
- Typical Control Region definition:
 - Same preselection as for signal
 - Invert some cuts
 - and/or apply mass window veto
- Perform a simultaneous fit of highly discriminating variables (e.g. btag) to extract data/MC scale factors

Comparison with atlas

Tau Tau

- Atlas 4.1 obs , 3.2 exp
- CMS(all) 3.2 obs, 3.7 exp
- CMS(noVH) 3.4obs, 3.6exp

▶ VH, BB

- Atlas mu=0.2+0.7**-**0.6
- CMS mu=1.0+-0.5

The Higgs Mechanism

- The Standard Model is a gauge theory with massless fermions
- Mass term cannot be simply "added" to the Lagrangian (not symmetric under the gauge groups)
- The Higgs mechanism allows to naturally break the electroweak symmetry

- Introduce a complex doublet and a potential with minimum at non-zero value
- Introduce Yukawa couplings of the new field to the fermions

- This additional "Symmetry Breaking Sector" produces:
 - Masses for fermions and gauge bosons
 - A new particle, the Higgs boson, coupled to fermions and gauge bosons with strength proportional to their mass
- The Higgs boson mass is not predicted
 - But constraints comes from precision measurements of SM processes being the only free parameter

$$\mathcal{L}_{SBS} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - V(\phi) + \mathcal{L}_{YK}$$

02/03/14