Inflationary Ramifications of a Meta-Stable Higgs Vacuum

arXiv: 1210.6987 Oleg Lebedev & AW DESY Hamburg the Higgs scalar potential ... if the coupling runs negative!

geometry of tunneling - bubble nucleation II

geometry of tunneling - bubble nucleation II

geometry of tunneling - bubble nucleation II

geometry of tunneling - bubble nucleation III

how do we avoid that fate ...

we either hope to be in one of the few Universes, where the Higgs does not jump over the barrier ... [Espinosa, Giudice & Riotto '08]

or

Peccei-Quinn axion for theta-angle ...) we have a tiny coupling to a heavy singlet scalar: threshold effect stabilizes the Higgs potential [Lebedev; Elias-Miro, Espinosa, Giudice, Lee & Strumia '12]

(cf. see-saw for neutrino masses;

or

[Lebedev & Lee '12] we use inflation in our past[Lebedev & AW '12]

Cosmic Microwave Background: PLANCK cosmology results 2013!

what we know so far ...

- The initial fluctuations are plasma sound waves seeded by perturbations in energy density with very peculiar properties:
 - near uniform distribution of power ('scale invariance')
 - coherence (have the same initial phase)
 - correlations which have been out of causal contact at 370.000 yrs, if the Universe expanded always driven by matter or radiation

mounting evidence for a very early phase of hyperfast exponential expansion. of the Universe - Inflation.

equations of motion:

$$\ddot{\phi} + 3H\dot{\phi} = -V' =: \frac{dV}{d\phi}$$

scalar field equation

slow-roll:

scale factor: size of the Universe $\frac{1}{2}\dot{\phi}^2 + V = H^2 = \frac{\dot{a}^2}{a^2}$

Friedmann (Einstein) equation

$$\begin{split} |\ddot{\phi}| \ll 3H|\dot{\phi}| & \text{and} \quad \dot{\phi}^2 \ll V \quad \Rightarrow \quad H \simeq const. \\ \Rightarrow \quad a = e^{Ht} \text{ for many e-folds } N = H \,\Delta t \quad , \quad \text{need: } N > 60 \\ & \text{exponential expansion:} \\ & inflation. \\ \text{slow-roll conditions on the scalar potential:} \\ \Rightarrow \quad \epsilon \equiv -\frac{\dot{H}}{H^2} \simeq \frac{1}{2} \left(\frac{V'}{V}\right)^2 \ll 1 \quad , \quad \eta \equiv \frac{\dot{\epsilon}}{\epsilon H} \simeq \frac{V''}{V} \ll 1 \end{split}$$

instability insurance: couple the Higgs to the inflaton ...

[Lebedev & AW;12]

 $\mathbf{\Omega}$

<u>a simple example:</u>

$$\mathcal{L} = \frac{1}{2} (\partial \mu h)^2 + \frac{1}{2} (\partial \mu \phi)^2 - V \quad \text{with: } V = V(h) + \frac{1}{2} m^2 \phi^2 + \frac{1}{2} \xi \phi^2 h^2$$

radiative stability
of inflation:
$$\xi \lesssim 10^{-6}$$
Higgs is stable
for: $\phi_0 \gtrsim 20 M_P$

<u>can start inflaton & Higgs at:</u> $\phi_0 \gtrsim 20 M_P$, $h_0 \simeq 0.1 M_P$

and Higgs will run exponentially fast to $b = v = 10^{-16} M_P$ in about 20 e-folds !

see also SFB lectures by: Oleg Lebedev

evolution of the Higgs during inflation ... [Lebedev & AVV ; 12]

Thanks!