Vacuum stability in the Standard Model at two loops

Bernd Kniehl

II. Institut für Theoretische Physik, Universität Hamburg

Forum on (Meta-)Stability of the Electroweak Vacuum Hamburg, 4 June 2013 / Zeuthen, 5 June 2013

In collaboration w/ F. Bezrukov, M. Yu. Kalmykov, and M. Shaposhnikov.

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	000000	00

Outline

- Higgs potential
- Vacuum stability
- Mumerical analysis

Introduction: experimental status quo

Higgs boson of mass $m_H = (125.6 \pm 0.3)$ GeV w/ SM properties

- $m_H = 125.6 \text{ GeV}$ agrees w/ EW precision data.
- Triviality bound satisfied.
- How about vacuum stability bound?

- $\frac{g_V}{2} \equiv m_W \quad \rightsquigarrow \quad v = 2^{-1/4} G_F^{-1/2} = 246.220 \text{ GeV}$
- m_H is free parameter.

So far, bare fields and parameters.

Renormalizaton: RG evolution

Cosmological applications require reliable predictions over very large range of scales: $v \leq \mu \leq M_P$ Use $\overline{\text{MS}}$ renromalization scheme: running couplings $\lambda(\mu^2), y_t(\mu^2), g_s(\mu^2), \dots$ Two-step procedure: 1. RG evolution:

$$\mu^{2} \frac{d\lambda(\mu^{2})}{d\mu^{2}} = \beta_{\lambda} = \frac{1}{16\pi^{2}} (12\lambda^{2} + 6\lambda y_{t}^{2} - 3y_{t}^{4}) + \cdots$$
$$\mu^{2} \frac{dy_{t}(\mu^{2})}{d\mu^{2}} = \beta_{y_{t}} = \frac{1}{16\pi^{2}} y_{t} \left(\frac{9}{4}y_{t}^{2} - 4g_{s}^{2}\right) + \cdots$$
$$\mu^{2} \frac{dg_{s}(\mu^{2})}{d\mu^{2}} = \beta_{g_{s}} = \frac{1}{16\pi^{2}} g_{s}^{3} \left(-\frac{11}{2} + \frac{n_{f}}{3}\right) + \cdots$$

 $eta_{\lambda}^{(3)},eta_{y_t}^{(3)}$

 $\beta_{\cdots}^{(3)}, \beta_{g_s, y_t}^{(3)}$

Chetyrkin, Zoller, JHEP06(2012)033; 04(2013)091 Bednyakov *et al.*, PLB722(2013)336; arXiv:1303.4364 Mihaila *et al.*, PRL108(2012)151602; PRD86(2012)096008 Tarasov *et al.*, PLB93(1980)429

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	000000	00

Threshold corrections

2. Matching at $\mu_0 = \mathscr{O}(v)$:

 $\delta_{H}^{(lpha lpha_{s})}, \delta_{t}^{(lpha lpha_{s})} \ \delta_{H}^{(y_{t}^{4})}, \delta_{t}^{(y_{t}^{4})}$

Bezrukov, Kalmykov, BK, Shaposhnikov, JHEP10(2012)140 Degrassi *et al.*, JHEP08(2012)098

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	•00	000000	00

Triviality and vaccum stability in a nutshell

Recall

$$\mu^{2} \frac{d\lambda(\mu^{2})}{d\mu^{2}} = \frac{1}{16\pi^{2}} (12\lambda^{2} + 6\lambda y_{t}^{2} - 3y_{t}^{4}) + \cdots$$
$$\mu^{2} \frac{dy_{t}(\mu^{2})}{d\mu^{2}} = \frac{1}{16\pi^{2}} y_{t} \left(\frac{9}{4} y_{t}^{2} - 4g_{s}^{2}\right) + \cdots$$
$$\lambda(m_{H}^{2}) = 0.130 \times \left(\frac{m_{H}}{125.6 \text{ GeV}}\right)^{2}, \quad y_{t}(m_{t}^{2}) = 0.993 \times \frac{m_{t}}{172.9 \text{ GeV}}, \quad g_{s}(m_{Z}^{2}) = 1.220$$

- Triviality bound: Maiani *et al.*, NPB136(1979)115 If $m_H > M_{max}$, then $\lambda(\mu^2) \to \infty$ for $\mu \to \mu_{Landau}$. (For $m_t \ll m_H$, $\mu_{Landau} \approx m_H \exp \frac{2\pi^2}{3\lambda(m_H^2)} = 1.2 \times 10^{24} \text{ GeV}$) $\to \lambda(\mu_0^2) = 0 \text{ trivial}$
- Vacuum stability bound: Lindner, ZPC31(1986)295 If $m_H < M_{min}$, then $\lambda(\mu^2) < 0$ for $\mu > \mu_{stab}$. \rightarrow Decay of universe

00	888	000	0000000	00
Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook

Vaccum stability condition

Determine M_{\min} so that for $m_H = M_{\min}$

$$\lambda(\mu_{\text{stab}}) = 0 = \beta_{\lambda}(\lambda(\mu_{\text{stab}}))$$

at some given $\mu_{stab} \gg v$, *e.g.* $\mu_{stab} = M_P$. Caveat: M_{min} is (slightly) scheme dependent. \rightsquigarrow theoretical uncertainty

00	000	000	0000000	00
Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook

Effective potential

Determine \widetilde{M}_{\min} so that for $m_H = \widetilde{M}_{\min}$

 $V(\Phi_{\rm SM}) = V(\Phi_1), \qquad V'(\Phi_{\rm SM}) = V'(\Phi_1)$

at some given $\Phi_1 \gg \Phi_{SM}$, *e.g.* $\Phi_1 = \Phi_P$. NB: Numerically, $\widetilde{M}_{\min} - M_{\min} = \mathcal{O}(0.1 \text{ GeV})$, *i.e.* well within theoretical uncertainty.

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	•000000	00

Numerical analysis Bezrukov, Kalmykov, BK, Shaposhnikov, JHEP10(2012)140

3-loop evolution / 2-loop matching yields:

$$M_{\rm min} = \left[128.95 + \frac{M_t - 172.9 \,\,{\rm GeV}}{1.1 \,\,{\rm GeV}} \times 2.2 - \frac{\alpha_s - 0.1184}{0.0007} \times 0.56 \right] \,\,{\rm GeV}$$

Source of uncertainty	Nature of estimate	$\Delta_{\text{theor}} M_{\text{min}} \text{ [GeV]}$
3-loop matching λ	sensitivity to μ_0	1.0
3-loop matching y _t	sensitivity to μ_0	0.2
4-loop α_s to y_t	educated guess [Kataev, Kim]	0.4
confinement, y _t	educated guess $\sim \Lambda_{QCD}$	0.5
4-loop running $M_W \rightarrow M_P$	educated guess	< 0.2
total uncertainty	sum of squares	1.2
total uncertainty	linear sum	2.3

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook

Anatomy

Matching scale μ_0 , GeV

Contribution	ΔM_{\min} [GeV]
3-loop beta functions	-0.23
$\delta y_t \propto O(\alpha_s^3)$	-1.15
$\delta y_t \propto O(\alpha \alpha_s)$	-0.13
$\delta\lambda \propto O(\alpha\alpha_{\rm s})$	0.62
$\delta y_t, \delta \lambda \propto O(y_t^4)$	0.2

 Introduction
 Higgs potential
 Vacuum stability
 Numerical analysis
 Outlook

 00
 000
 000
 000
 000
 000
 000

$\mathcal{O}(\alpha \alpha_s)$ threshold corrections

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	0000000	00

Reduction of fundamental scales

- $\mu_{\text{stab}} = 2.9 \times 10^{18} \text{ GeV}$ stable w.r.t. variations of $m_t = (172.9 \pm 1.1) \text{ GeV}, \ \alpha_s^{(5)}(m_Z^2) = 0.1184 \pm 0.0007 \text{ (dashed)},$ and $m_Z < \mu_0 < m_t$ (yellow).
- $\mu_{\rm stab} \approx M_P = 2.44 \times 10^{18} {\rm GeV}$
- Electroweak scale is determined by Planck scale physics!

Vacuum stability in the Standard Model at two loops

LC as top and Higgs factory

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	000000	00

Vacuum metastability

Degrassi et al., JHEP08(2012)098

EW vacuum is metastable / unstable, if its lifetime overshoots / undershoots that of the universe.

Vacuum stability in the Standard Model at two loops

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	0000000	•0

Outlook: pole mass m_t

- PDG value $M_X(t \rightarrow X) = (172.9 \pm 1.1)$ GeV is not pole mass m_t , but just parameter in MC programs w/o RC to partonic cross sections.
- Rigorous determination of $\overline{\text{MS}}$ mass $\overline{m}_t(\mu^2)$ from $\sigma_{\text{tot}}(p\bar{p}, pp \rightarrow t\bar{t} + X) \rightsquigarrow \text{Moch's talk}$
- $\overline{m}_t(\mu^2) m_t$ receives large EW RC from tadpole contributions.

Jegerlehner, Kalmykov, BK, PLB722(2013)123

Introduction	Higgs potential	Vacuum stability	Numerical analysis	Outlook
00	000	000	0000000	00
BSM physics				

- Depending on future precision measurements of m_H, m_t, α_s and higher-loop RC calculations, SM may be stable way up to M_P .
- Reduction of m_t by 1.6 GeV [cf. $m_t m_{\tilde{t}} = (-1.4 \pm 2.0)$ GeV, $\Gamma_t = (2.0^{+0.7}_{-0.6})$ GeV] $\rightsquigarrow M_{\min} = m_H = 125.6$ GeV
- BSM physics still necessary to solve open problems, *e.g.* smallness of neutrino masses, strong CP problem, dark matter, baryon asymmetry of universe, *etc.* → Westphal's talk