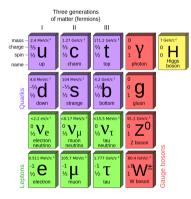


Physics Highlights from the LHCb Experiment

Michael Schmelling – MPI for Nuclear Physics

Outline


- Introduction
- LHCb Design and Performance
- Selected Results
- Upgrade Plans
- Summary and Outlook

Hep 1. INTRODUCTION

→ an extremely successful theory: the Standard Model

- 1 fundamental scalar
- 2 types of fermions
- 3 generations
- 4 fermions/generation
- 3 gauge interactions
- 4 gauge bosons

why?

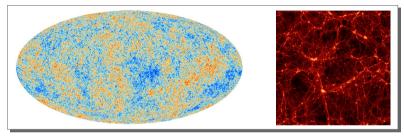
→ some of today's big physics questions . .

What is the origin of mass?

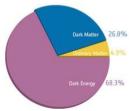
- → how do fundamental particles acquire mass?
 - Standard Model: Higgs mechanism
 - → space is filled with a Higgs background field
 - → mass arises as resistance to movement through this field
 - → if the model is correct, then a Higgs particle must exists
 - ✓ the LHC experiments found a Higgs-particle

What is the origin of mass?

- → how do fundamental particles acquire mass?
 - Standard Model: Higgs mechanism
 - → space is filled with a Higgs background field
 - → mass arises as resistance to movement through this field
 - → if the model is correct, then a Higgs particle must exists
 - ✓ the LHC experiments found a Higgs-particle


what determines the mass values?

- the Higgs mechanism does not predict mass values
- understanding mass hierarchy requires New Physics
 - → new (heavy) particles and fields
 - → rich new phenomenology


Hief What is Dark Matter made of?

→ cosmic microwave background & structure formation:

- the universe is "flat" (euclidean)
- its energy content is [Planck]
 - → 68.3% dark energy
 - ➔ 4.9% ordinary matter
 - → 26.8% dark matter (heavy particles?)

Heb Where is the Antimatter?

→ the puzzle

- antimatter (in small quantities) is observed in lab-experiments
- always same amounts of matter and antimatter created
- the same processes occured in the early universe, but
- no evidence for sizeable amounts of antimatter in the universe

(image: HST)

- no evidence for anti-matter annihilation radiation
- no evidence for anti-nuclei in cosmic rays

Leven Looking for answers

- → Sakharov: a matter-dominated universe requires:
 - 1. baryon number non-conservation
 - 2. C- and CP-violation (C=particle-antiparticle exchange, P=parity)
 - 3. thermal non-equilibrium

Heb Looking for answers

- → Sakharov: a matter-dominated universe requires:
 - 1. baryon number non-conservation
 - 2. C- and CP-violation (C=particle-antiparticle exchange, P=parity)
 - 3. thermal non-equilibrium
- all three conditions are satisfied in the Standard Model, but:
 - the SM-Higgs is to heavy to drive a 1st order phase transition
 - CP-violation in CKM-sector is too small to explain

$$rac{n_b-n_{ar b}}{n_\gamma}pproxrac{n_b}{n_\gamma}pprox 6\cdot 10^{-10}$$

Heb Looking for answers

- → Sakharov: a matter-dominated universe requires:
 - 1. baryon number non-conservation
 - 2. C- and CP-violation (C=particle-antiparticle exchange, P=parity)
 - 3. thermal non-equilibrium
- all three conditions are satisfied in the Standard Model, but:
 - the SM-Higgs is to heavy to drive a 1st order phase transition
 - CP-violation in CKM-sector is too small to explain

$$rac{n_b-n_{ar b}}{n_\gamma}pproxrac{n_b}{n_\gamma}pprox 6\cdot 10^{-10}$$

conclusions:

- instead of the Sakharov conditions on has CPT-violation
- alternatively there are new, additional sources of CP-violation
 - ➔ in the quark-sector (baryogenesis)
 - ➔ in the lepton-sector (transferred to the quark sector, leptogenesis)

Hich Discussion

→ strong arguments for New Physics beyond the Standard Model

- new particles could explain dark matter
- new particles could mediate extra CP-violation

Http Discussion

→ strong arguments for New Physics beyond the Standard Model

- new particles could explain dark matter
- new particles could mediate extra CP-violation
- direct search for new heavy particles → ATLAS, CMS
 - → produce and determine properties in the lab

Htep Discussion

- → strong arguments for New Physics beyond the Standard Model
 - new particles could explain dark matter
 - new particles could mediate extra CP-violation
 - direct search for new heavy particles → ATLAS, CMS
 - → produce and determine properties in the lab
 - probe by precision measurements in flavour physics → LHCb
 - → new particles will have additional couplings
 - → can influence Standard Model suppressed decay rates
 - ➔ phases in couplings will affect CP-violation

Http Discussion

- → strong arguments for New Physics beyond the Standard Model
 - new particles could explain dark matter
 - new particles could mediate extra CP-violation
 - direct search for new heavy particles → ATLAS, CMS
 - → produce and determine properties in the lab
 - probe by precision measurements in flavour physics → LHCb
 - → new particles will have additional couplings
 - → can influence Standard Model suppressed decay rates
 - → phases in couplings will affect CP-violation
 - I flavour physics (weak interaction) is expected to play a key role
 - → weak interaction couples to all known fields
 - ➔ already in the Standard Model there is C- and CP-violation
 - → charged weak currents couple with complex phases
 - → trivial for degenerate masses, i.e. depend on mass hierarchy

Http CP-violation

CP violation can only occur in the interference between different complex amplitudes, and if an invariant phase ("strong phase") exists which is not complex-conjugated under particle-antiparticle exchange. → no CP violation if phases come only from weak interactions!

Ktcp CP-violation

CP violation can only occur in the interference between different complex amplitudes, and if an invariant phase ("strong phase") exists which is not complex-conjugated under particle-antiparticle exchange. → no CP violation if phases come only from weak interactions!

■ direct CP-violation in decay → $\Gamma(B \to f) \neq \Gamma(\bar{B} \to \bar{f})$

Ktcp CP-violation

CP violation can only occur in the interference between different complex amplitudes, and if an invariant phase ("strong phase") exists which is not complex-conjugated under particle-antiparticle exchange. → no CP violation if phases come only from weak interactions!

- direct CP-violation in decay
 - $\Rightarrow \ \Gamma(B \to f) \neq \Gamma(\bar{B} \to \bar{f})$

CP-violation in particle-antiparticle mixing

→ $\Gamma(B \rightarrow \overline{B}) \neq \Gamma(\overline{B} \rightarrow B)$

CP violation can only occur in the interference between different complex amplitudes, and if an invariant phase ("strong phase") exists which is not complex-conjugated under particle-antiparticle exchange. → no CP violation if phases come only from weak interactions!

direct CP-violation in decay

 $\twoheadrightarrow \ \Gamma(B \to f) \neq \Gamma(\bar{B} \to \bar{f})$

CP-violation in particle-antiparticle mixing

 $\Rightarrow \ \Gamma(B \to \bar{B}) \neq \Gamma(\bar{B} \to B)$

CP-violation in interference of mixing and decay

 $\Rightarrow \Gamma(B \to f) \neq \Gamma(\bar{B} \to f)$

- → decay into CP-eigenstate
- → mixing and decay mediated by only weak interactions
- → very clean since "strong phase" exactly known

CP-Asymmetry A_{CP} for decays into a final state y:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \Gamma(X o y) - \Gamma(\overline{X} o ar{y}) \ \Gamma(X o y) + \Gamma(\overline{X} o ar{y}) \end{aligned} \end{aligned}$$

with partial widths

 $\Gamma(\cdot) = |a(\cdot)|^2$

CP-Asymmetry A_{CP} for decays into a final state y:

$$A_{CP} = rac{\Gamma(X o y) - \Gamma(\overline{X} o ar{y})}{\Gamma(X o y) + \Gamma(\overline{X} o ar{y})}$$

with partial widths $\Gamma(\cdot) = |a(\cdot)|^2$

Consider mixing induced CP-violation in decays to a CP-eigenstate $y = y_{CP}$:

$$\begin{split} a(X \to y_{CP}) &= a_m(X \to X) \cdot a_d(X \to y_{CP}) + a_m(X \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) \\ a(\overline{X} \to y_{CP}) &= a_m(\overline{X} \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) + a_m(\overline{X} \to X) \cdot a_d(X \to y_{CP}) \end{split}$$

CP-Asymmetry A_{CP} for decays into a final state y:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

with partial widths $\Gamma(\cdot) = |a(\cdot)|^2$

Consider mixing induced CP-violation in decays to a CP-eigenstate $y = y_{CP}$:

$$\begin{split} a(X \to y_{CP}) &= a_m(X \to X) \cdot a_d(X \to y_{CP}) + a_m(X \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) \\ a(\overline{X} \to y_{CP}) &= a_m(\overline{X} \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) + a_m(\overline{X} \to X) \cdot a_d(X \to y_{CP}) \end{split}$$

The contributing amplitudes are:

$$\boxed{ \begin{array}{c} a_d(X \to y_{CP}) \\ a_d(\overline{X} \to y_{CP}) \end{array} = A e^{\pm i\omega} \left| \begin{array}{c} a_m(X \to X) \\ a_m(\overline{X} \to \overline{X}) \end{array} \right| = \cos \frac{\Delta m t}{2} \left| \begin{array}{c} a_m(X \to \overline{X}) \\ a_m(\overline{X} \to X) \end{array} \right| = i \sin \frac{\Delta m t}{2} e^{\pm i\phi}$$

with phase factors

- 📃 decay phase: ω
- 📃 mixing phase: 🖕

CP-Asymmetry A_{CP} for decays into a final state y:

$$m{A}_{CP} = rac{\Gamma(X o y) - \Gamma(\overline{X} o ar{y})}{\Gamma(X o y) + \Gamma(\overline{X} o ar{y})}$$

with partial widths $\Gamma(\cdot) = |a(\cdot)|^2$

Consider mixing induced CP-violation in decays to a CP-eigenstate $y = y_{CP}$:

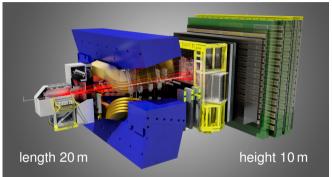
$$\begin{split} a(X \to y_{CP}) &= a_m(X \to X) \cdot a_d(X \to y_{CP}) + a_m(X \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) \\ a(\overline{X} \to y_{CP}) &= a_m(\overline{X} \to \overline{X}) \cdot a_d(\overline{X} \to y_{CP}) + a_m(\overline{X} \to X) \cdot a_d(X \to y_{CP}) \end{split}$$

The contributing amplitudes are:

$$\begin{bmatrix} a_d(X \to y_{CP}) \\ a_d(\overline{X} \to y_{CP}) \end{bmatrix} = A e^{\pm i\omega} \begin{bmatrix} a_m(X \to X) \\ a_m(\overline{X} \to \overline{X}) \end{bmatrix} = \cos \frac{\Delta mt}{2} \begin{bmatrix} a_m(X \to \overline{X}) \\ a_m(\overline{X} \to X) \end{bmatrix} = i \sin \frac{\Delta mt}{2} e^{\pm i\phi}$$

with phase factors

- 📃 decay phase: ω
- 📃 mixing phase: 🔶


$$A_{CP}=-\sin(\Delta mt)\sin(\phi-2\omega)$$

Physics highlights from the LHCb experiment - Introduction

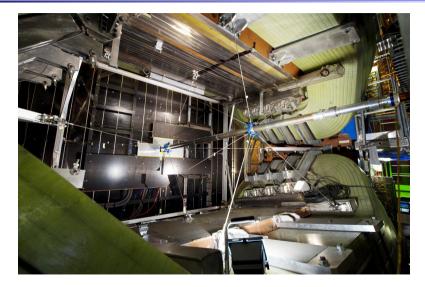
HER 2. LHCb Design and Peformance

] forward spectrometer with $15 < \Theta < 300$ mrad and $\int Bdl = 4$ Tm

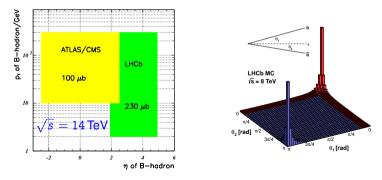
VELO: silicon strip detector for precise secondary vertex reconstruction
 TT,T1,T2,T2: tracking stations, silicon strip and straws for charged particles

- **RICH1**, **RICH2**: ring imaging cherenkov detectors for $\pi/K/p$ -separation
- ECAL, HCAL: electromagnetic & hadronic calorimeters for trigger and neutrals
- M1-M5: tracking stations for muon identification

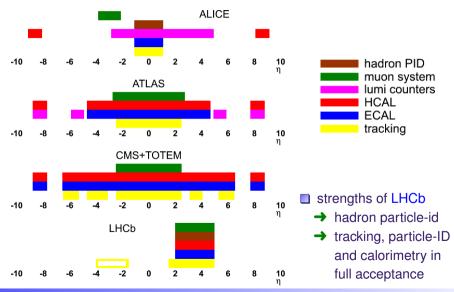
Physics highlights from the LHCb experiment - LHCb design and performance


Heb Installation in the cavern

Http: Inside the spectrometer magnet


Physics highlights from the LHCb experiment - LHCb design and performance

Hick Design aspects of LHCb


→ optimization for B-Physics

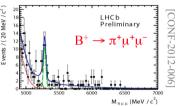
- forward angular coverage → large boosts: B decay lengths O(1 cm)
- focus on vertex reconstruction and particle identification
- phase space coverage down to low p_T , small x_{Bj} and large η
- flexible and highly selective trigger

Http://www.angular.coverage.of.the LHC experiments

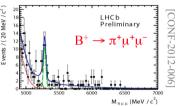
Physics highlights from the LHCb experiment - LHCb design and performance

Hicp Key points

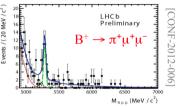
- → $\sigma(b\bar{b}) = 284 \pm 53 \,\mu b \,(\sqrt{s} = 7 \,\text{TeV})$
 - ♦ O(100) kHz b b̄-events
 - ♦ O(2) MHz $c\bar{c}$ -events


ttick Key points

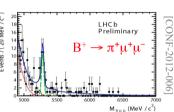
- → $\sigma(b\bar{b}) = 284 \pm 53 \,\mu b \,(\sqrt{s} = 7 \,\text{TeV})$
 - ♦ O(100) kHz b b̄-events
 - ♦ O(2) MHz cc̄-events
- all *b*-hadron species are produced
 - → full access to B_s physics



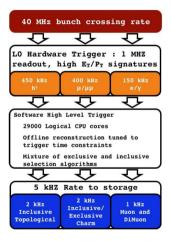
- $→ σ(b\bar{b}) = 284 \pm 53 \, \mu b \, (\sqrt{s} = 7 \, \text{TeV})$ $↔ O(100) \, \text{kHz} \, b\bar{b} \text{-events}$ $↔ O(2) \, \text{MHz} \, c\bar{c} \text{-events}$
- all b-hadron species are produced
 - \rightarrow full access to B_s physics
- surpassed B-factories even for B^0 and B^+ decays
 - → $BR(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-8}$
 - → rarest B-decay ever observed!



- $→ σ(b\bar{b}) = 284 \pm 53 \, \mu b \, (\sqrt{s} = 7 \, \text{TeV})$ $↔ O(100) \, \text{kHz} \, b\bar{b} \text{-events}$ $↔ O(2) \, \text{MHz} \, c\bar{c} \text{-events}$
- all b-hadron species are produced
 - \rightarrow full access to B_s physics
- surpassed B-factories even for B^0 and B^+ decays
 - → $BR(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6_{\text{stat}} \pm 0.2_{\text{svs}}) \times 10^{-8}$
 - → rarest B-decay ever observed!
- new states discovered: e.g. $\Lambda_{h}^{*}(5912/5920)$ orbitally-excited states



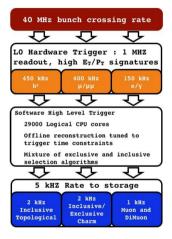
- $→ σ(b\bar{b}) = 284 \pm 53 \, \mu b \, (\sqrt{s} = 7 \, \text{TeV})$ $↔ O(100) \, \text{kHz} \, b\bar{b} \text{-events}$ $↔ O(2) \, \text{MHz} \, c\bar{c} \text{-events}$
- all b-hadron species are produced
 - \rightarrow full access to B_s physics
- surpassed B-factories even for B^0 and B^+ decays
 - → $BR(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-8}$
 - → rarest B-decay ever observed!
- new states discovered: e.g. $\Lambda_{h}^{*}(5912/5920)$ orbitally-excited states
- new decay modes discovered, e.g. $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$



- $→ \sigma(b\bar{b}) = 284 \pm 53 \,\mu\text{b} \,(\sqrt{s} = 7 \,\text{TeV}) \\ & \bullet O(100) \,\text{kHz} \, b\bar{b} \text{-events} \\ & \bullet O(2) \,\text{MHz} \, c\bar{c} \text{-events}$
- all b-hadron species are produced
 - \rightarrow full access to B_s physics
- surpassed B-factories even for B^0 and B^+ decays
 - → $BR(B^+ \to \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-8}$
 - → rarest B-decay ever observed!
- new states discovered: e.g. $\Lambda_h^*(5912/5920)$ orbitally-excited states
- new decay modes discovered, e.g. $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$
- complementary coverage for electroweak studies, QCD, exotics, ...

Http://www.com/chickenservices.com/chickenserv

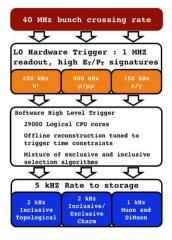
ca. 50 kB/event


→ allow selection of rare processes

- Level-0 Trigger: hardware
 - ➔ fully synchronous at 40 MHz
 - ➔ use calorimeters and muon system
 - → selection of high- p_T particles

✓ $p_T(\mu) > O(1) \operatorname{GeV}/c$ ✓ $p_T(h, e, \gamma) > O(3) \operatorname{GeV}/c$

Hich The LHCb trigger


ca. 50 kB/event

→ allow selection of rare processes

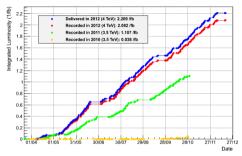
- Level-0 Trigger: hardware
 - ➔ fully synchronous at 40 MHz
 - ➔ use calorimeters and muon system
 - → selection of high- p_T particles
 - ✓ $p_T(\mu) > O(1) \operatorname{GeV}/c$
 - ✓ $p_T(h, e, \gamma) > O(3) \operatorname{GeV}/c$
- High-Level Trigger: software
 - → HLT1: add VELO information
 - impact parameter- and lifetime cuts
 - → HLT2: global event reconstruction
 - ✓ exclusive & inclusive selections

Http://www.com/chickenservices.com/chickenserv

ca. 50 kB/event

→ allow selection of rare processes

- Level-0 Trigger: hardware
 - ➔ fully synchronous at 40 MHz
 - ➔ use calorimeters and muon system
 - → selection of high- p_T particles


✓ $p_T(\mu) > O(1) \operatorname{GeV}/c$

✓ $p_T(h, e, \gamma) > O(3) \operatorname{GeV}/c$

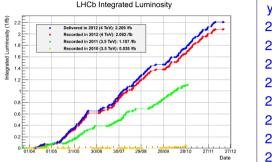
High-Level Trigger: software

- → HLT1: add VELO information
 - impact parameter- and lifetime cuts
- → HLT2: global event reconstruction
 - ✓ exclusive & inclusive selections
- \square up to O(30) kHz "deferred" triggering

Hich Data taking history

LHCb Integrated Luminosity

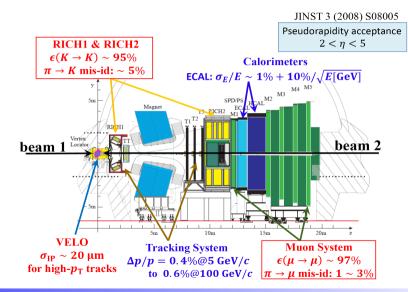
DAQ efficiency \approx 95%


 \blacksquare instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

- ➔ twice design value at double the nominal bunch spacing
- ➔ luminosity leveling for LHCb by beam steering
- \blacksquare a total of 2 × 10¹⁴ pp-collisions scrutinized

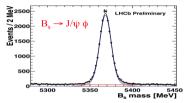
Hich Data taking history

year	luminosity	E[TeV]
2009	$6.8\mu\mathrm{b}^{-1}$	0.9
2010	$0.3 {\rm nb}^{-1}$	0.9
2010	$0.37{ m pb}^{-1}$	7
2011	$0.1{ m pb}^{-1}$	2.76
2011	$1{ m fb}^{-1}$	7
2012	$2{ m fb}^{-1}$	8
2013	$1.3 {\rm nb}^{-1}$	5 (pA)
2013	$0.6{ m nb}^{-1}$	5 (Ap)


DAQ efficiency \approx 95%

Instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

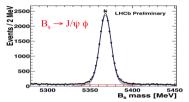
- ➔ twice design value at double the nominal bunch spacing
- ➔ luminosity leveling for LHCb by beam steering
- \blacksquare a total of 2 × 10¹⁴ pp-collisions scrutinized



Physics highlights from the LHCb experiment - LHCb design and performance

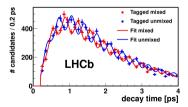
Htch Tracking and vertexing performance

excellent mass resolution for complex decays



→ B-mass resolution: $\sigma(m_B) = 8 \text{ MeV}/c^2$ for $B_s \rightarrow J/\psi X$ with J/ψ mass constraint

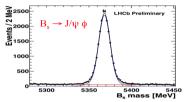
Htch Tracking and vertexing performance



excellent mass resolution for complex decays

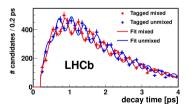
→ B-mass resolution: $\sigma(m_B) = 8 \text{ MeV}/c^2$ for $B_s \rightarrow J/\psi X$ with J/ψ mass constraint

excellent vertex- and proper-time resolution



→ proper time resolution: $\sigma_t \sim 45 \text{ fs}$ for B_s -mixing

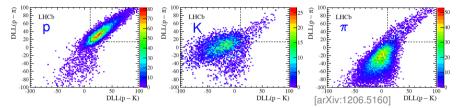
Htch Tracking and vertexing performance



excellent mass resolution for complex decays

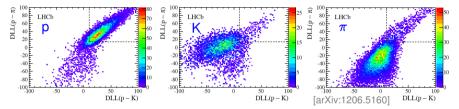
→ B-mass resolution: $\sigma(m_B) = 8 \text{ MeV}/c^2$ for $B_s \rightarrow J/\psi X$ with J/ψ mass constraint

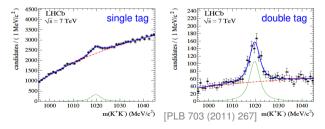
excellent vertex- and proper-time resolution


→ proper time resolution: $\sigma_t \sim 45 \text{ fs}$ for B_s -mixing

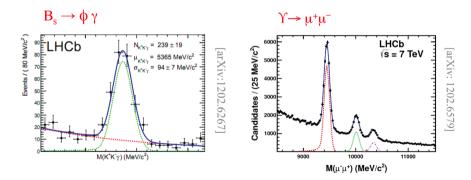
polarity switching of dipol magnet allows to control systematics

Htch Particle identification performance

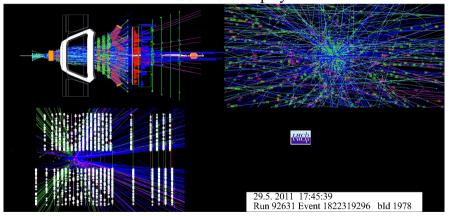

→ RICH log-likelihood differences from calibration samples


Heb Particle identification performance

→ RICH log-likelihood differences from calibration samples


\square check of K-identification with $\phi \rightarrow K^+ K^-$ -signal

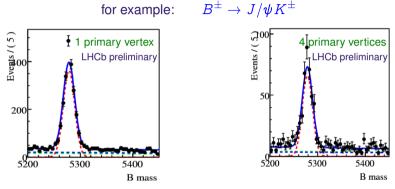
 allows in-situ calibration of kaon identification


Help Calorimetry and muon identification

- ECAL: optimized to measure radiative B-decays
- HCAL: for triggering on hadronic final states
- Muon system for quarkonium and semi-leptonic decays

→ pp high-pileup event in LHCb LHCb Event Display

Physics with high-pileup events



 $B^{\pm} \rightarrow J/\psi K^{\pm}$ for example: Events / (5,) Everats / (5) 1 primary vertex 4 primary vertices Ŧ LHCb preliminary LHCb preliminary 50 200 5300 5300 5400 5400 5200 B mass B mass

Http://www.cs.with.high-pileup.events

e.g. reconstruction of B-meson decays . . .

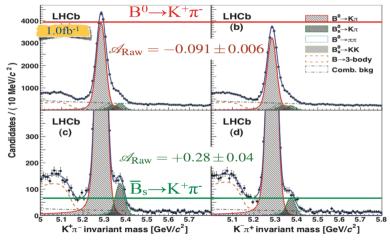
 \checkmark clean signal for $N_{PV}=1$ and $N_{PV}=4$

- ✓ S/B basically unaffected by pileup
- ✓ particle-ID still operational at $N_{PV} = 4$

- → wide range of physics topics covered by the experiment
 - QCD measurements and spectroscopy
 - → particle production, particle ratios, forward energy flow
 - ➔ b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - → measurement of exotic states, search for lepton number violation
 - → studies of pA and Ap interactions

- → wide range of physics topics covered by the experiment
 - QCD measurements and spectroscopy
 - → particle production, particle ratios, forward energy flow
 - ➔ b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - → measurement of exotic states, search for lepton number violation
 - → studies of pA and Ap interactions
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production

- → wide range of physics topics covered by the experiment
 - QCD measurements and spectroscopy
 - → particle production, particle ratios, forward energy flow
 - ➔ b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - → measurement of exotic states, search for lepton number violation
 - → studies of pA and Ap interactions
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production
 - CKM physics with heavy flavours
 - → charm mixing and CP-violation studies
 - → CP-violation, mixing and rare decays of B-mesons
 - \rightarrow full access to B_s system


- → wide range of physics topics covered by the experiment
 - QCD measurements and spectroscopy
 - → particle production, particle ratios, forward energy flow
 - ➔ b- and c-hadron spectroscopy
 - → charmonium, bottomonium
 - → measurement of exotic states, search for lepton number violation
 - → studies of pA and Ap interactions
 - electro-weak studies
 - → W & Z, Drell-Yan and jet production
 - CKM physics with heavy flavours
 - → charm mixing and CP-violation studies
 - → CP-violation, mixing and rare decays of B-mesons
 - \rightarrow full access to B_s system

explore the limits of the Standard Model!

Heb Direct CP-violation in B-decays

ightarrow study $B_d, \bar{B}_s \rightarrow K^+\pi^- + c.c.$ decays

[LHCB-PAPER-2013-018] in preparation

Physics highlights from the LHCb experiment - Selected results

MCS Results based on 1 fb⁻¹

- → corrections for detector and production asymmetries $A_{CP} = A_{raw} - (A_{det} + A_{prod})$
 - LHCb made of matter
 - LHCb not perfectly symmetric for positive and negative tracks
 - initial pp state is purely matter

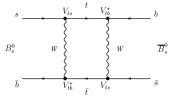
 $^{\circ}$ Results based on 1 fb⁻¹

- → corrections for detector and production asymmetries $A_{CP} = A_{raw} - (A_{det} + A_{prod})$
 - LHCb made of matter
 - LHCb not perfectly symmetric for positive and negative tracks
 - initial pp state is purely matter
- → most precise single measurement in B_d system $A_{CP} = \frac{\Gamma(\overline{B}_d \to K^- \pi^+) - \Gamma(B_d \to K^+ \pi^-)}{\Gamma(\overline{B}_d \to K^- \pi^+) + \Gamma(B_d \to K^+ \pi^-)} = -0.080 \pm 0.007_{\text{stat}} \pm 0.003_{\text{syst}}$

dominant systematics from detector and production asymmetries

Results based on 1 fb⁻¹

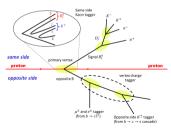
- → corrections for detector and production asymmetries $A_{CP} = A_{raw} - (A_{det} + A_{prod})$
 - LHCb made of matter
 - LHCb not perfectly symmetric for positive and negative tracks
 - initial pp state is purely matter
- → most precise single measurement in B_d system $A_{CP} = \frac{\Gamma(\overline{B}_d \to K^- \pi^+) - \Gamma(B_d \to K^+ \pi^-)}{\Gamma(\overline{B}_d \to K^- \pi^+) + \Gamma(B_d \to K^+ \pi^-)} = -0.080 \pm 0.007_{\text{stat}} \pm 0.003_{\text{syst}}$
 - dominant systematics from detector and production asymmetries
- → first observation of CPV in B_s system

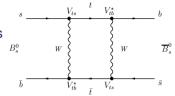

$$A_{CP} = \frac{\Gamma(\overline{B}_s \to K^+\pi^-) - \Gamma(B_s \to K^-\pi^+)}{\Gamma(\overline{B}_s \to K^+\pi^-) + \Gamma(B_s \to K^-\pi^+)} = 0.27 \pm 0.04_{\rm stat} \pm 0.01_{\rm syst}$$

dominant systematics from fit model

<mark>ਮਿੱਟ</mark>ਊ The B₅-mixing frequency

- → measure by means of flavour-specific B_s-decays
 - second-order weak process
 - only small phase from CKM-couplings
 - decay modes studied
 - → $B^0_s(\bar{b}s) \rightarrow D^-_s(\bar{c}s) \pi^+$
 - → $\bar{B}^0_s(b\bar{s}) \rightarrow D^+_s(c\bar{s}) \pi^-$



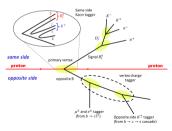

ਮਿ¢ਨੇ The B₅-mixing frequency

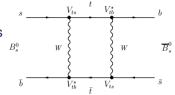
→ measure by means of flavour-specific B_s-decays

- second-order weak process
- only small phase from CKM-couplings
- decay modes studied
 - → $B_s^0(\bar{b}s) \rightarrow D_s^-(\bar{c}s) \pi^+$ → $\bar{B}_s^0(b\bar{s}) \rightarrow D_s^+(c\bar{s}) \pi^-$

- flavour tagging of initial state
 - opposite side taggers:

partial reconstruction of 2nd B-hadron

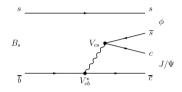

- same side kaon tagger: self-tagging from hadronization
- → combined tagging power:
 - $arepsilon(1-2\omega)^2=3.5\pm0.5\,\%$


<mark>ਮਿਟ</mark>ਊ The B₅-mixing frequency

→ measure by means of flavour-specific B_s-decays

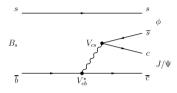
- second-order weak process
- only small phase from CKM-couplings
- decay modes studied
 - → $B_s^0(\bar{b}s) \rightarrow D_s^-(\bar{c}s) \pi^+$ → $\bar{B}_s^0(b\bar{s}) \rightarrow D_s^+(c\bar{s}) \pi^-$

- flavour tagging of initial state
 - → opposite side taggers:


partial reconstruction of 2nd B-hadron

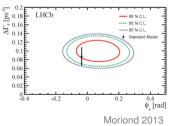
- same side kaon tagger: self-tagging from hadronization
- → combined tagging power:
 - $arepsilon(1-2\omega)^2=3.5\pm0.5\,\%$

result: $\Delta m_s = 17.768 \pm 0.023 \pm 0.006 \, {\rm ps}^{-1}$ Moriond 2013


→ CP-violation from interference between mixing and decay

- "golden decay" in the B_s-system
 SM-dominated tree-level decay
 small SM phase between mixing & decay
 - ➔ "null-test" of the Standard Model
 - → sensitive to New Physics in mixing

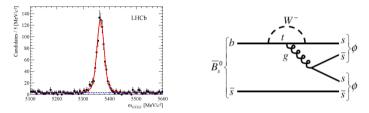
→ CP-violation from interference between mixing and decay



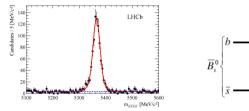
- "golden decay" in the B_s-system
 SM-dominated tree-level decay
 small SM phase between mixing & decay
 → "null-test" of the Standard Model
 → sensitive to New Physics in mixing
- measure mixing phase and lifetime-difference
- study flavour symmetric decay modes

$$ightarrow ~B_s
ightarrow J/\psi \phi, ~B_s
ightarrow J/\psi \pi^+\pi^-$$

- angular analysis for vector-vector states
 - → $\phi_s = 0.01 \pm 0.07 \pm 0.01$ rad
 - → $\Delta \Gamma_s = 0.106 \pm 0.011 \pm 0.007 \, \mathrm{ps}^{-1}$

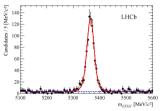

consistent with Standard Model

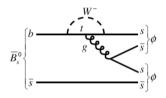
 \rightarrow first measurements of $B_s \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$ Moriond 2013



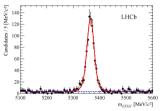
□ penguin dominated decay process in vector-vector final state
 → angular analysis of current data φ ∈ [-2.46, -0.76] @ 68 % CL

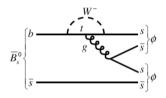
 \rightarrow first measurements of $B_s \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$ Moriond 2013



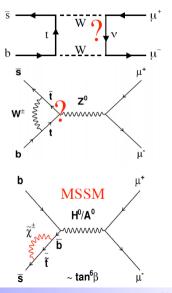

□ penguin dominated decay process in vector-vector final state
 → angular analysis of current data φ ∈ [-2.46, -0.76] @ 68 % CL
 □ also sensitive to New Physics in decay

 \rightarrow first measurements of $B_s \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$ Moriond 2013


penguin dominated decay process in vector-vector final state

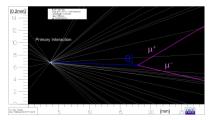

- → angular analysis of current data $\phi \in [-2.46, -0.76] @ 68 \%$ CL
- also sensitive to New Physics in decay
- almost perfect cancellation of SM-phases in mixing and decay
- Standard Model CP-violation < 1 %
 - → significant CP-violating phase would be due to New Physics
 - → comparison with $B_s \rightarrow J/\psi \phi$ disentangles mixing and decay

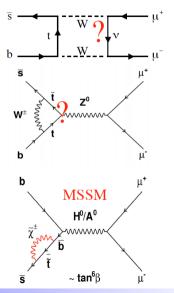
ightarrow first measurements of $B_s
ightarrow \phi \phi
ightarrow K^+ K^- K^+ K^-$ Moriond 2013


penguin dominated decay process in vector-vector final state

- → angular analysis of current data $\phi \in [-2.46, -0.76]$ @ 68 % CL
- also sensitive to New Physics in decay
- almost perfect cancellation of SM-phases in mixing and decay
- Standard Model CP-violation < 1 %
 - ➔ significant CP-violating phase would be due to New Physics
 - → comparison with $B_s \rightarrow J/\psi \phi$ disentangles mixing and decay
- \square similar channel w/o complication of angular analysis: $B_s \to K_S^0 K_S^0$

Here $B \to \mu^+ \mu^-$


- → very rare FCNC decays
 - SM prediction [Eur.Phys.J. C72 (2012)2172] $BR(B_s \rightarrow \mu^+ \mu^-) = (3.23 \pm 0.27) \cdot 10^{-9}$ $BR(B_d \rightarrow \mu^+ \mu^-) = (1.07 \pm 0.10) \cdot 10^{-10}$
 - sensitive to new physics
 - possibly strong enhancements in MSSM $BR(B \rightarrow \mu^+ \mu^-) \propto \tan^6 \beta$



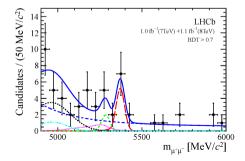
Here $B \to \mu^+ \mu^-$

- → very rare FCNC decays
 - SM prediction [Eur.Phys.J. C72 (2012)2172] $BR(B_s \rightarrow \mu^+ \mu^-) = (3.23 \pm 0.27) \cdot 10^{-9}$ $BR(B_d \rightarrow \mu^+ \mu^-) = (1.07 \pm 0.10) \cdot 10^{-10}$
 - sensitive to new physics
 - possibly strong enhancements in MSSM $BR(B \rightarrow \mu^+ \mu^-) \propto \tan^6 \beta$
 - clean experimental signature

Hteb Experimental results

→ multivariate analysis [arXiv:1211.2674]

Boosted Decision Tree combining topological information


- **1**.0 fb⁻¹ at $\sqrt{s} = 7$ TeV plus 1.1 fb⁻¹ at $\sqrt{s} = 8$ TeV
- 3.5 σ evidence $BR(B_s \rightarrow \mu^+ \mu^-) = (3.2 \pm 1.4 \pm 0.5) \times 10^{-9}$
- 95% CL limit $BR(B_d
 ightarrow \mu^+ \mu^-) < 9.4 imes 10^{-10}$

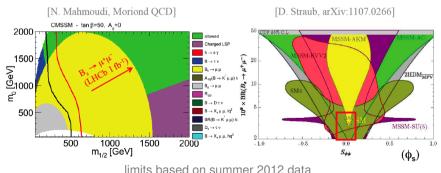
Hteb Experimental results

→ multivariate analysis [arXiv:1211.2674]

- Boosted Decision Tree combining topological information
- 1.0 fb⁻¹ at $\sqrt{s} = 7$ TeV plus 1.1 fb⁻¹ at $\sqrt{s} = 8$ TeV
- **a** 3.5 σ evidence $BR(B_s \to \mu^+ \mu^-) = (3.2 \pm 1.4 \pm 0.5) \times 10^{-9}$
- 95% CL limit $BR(B_d
 ightarrow \mu^+ \mu^-) < 9.4 imes 10^{-10}$

- ➔ in signal region mainly combinatorial background
- → peaking contributions from $B \rightarrow h^+ h^-$
- → low mass background from $B^0 \rightarrow \pi^- \mu^+ \nu_\mu$ (dominant) and $B^{0(+)} \rightarrow \pi^{0(+)} \mu^+ \mu^-$

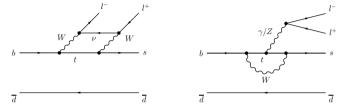
Heb Implications of LHCb results



- strong constraints on New Physics
- complementary approach to direct searches by GPDs

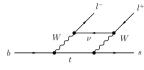
Hick Implications of LHCb results

- strong constraints on New Physics
- complementary approach to direct searches by GPDs
- two recent examples:
 - → limits on MSSM mass-scales from $B_s \rightarrow \mu^+ \mu^-$
 - → accessible $\{\phi_s, BR(B_s \to \mu^+ \mu^-)\}$ range for various models



Physics highlights from the LHCb experiment - Selected results

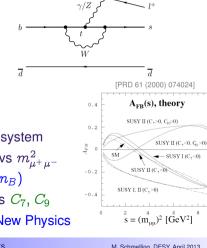
Here $K^*\mu^+\mu^-$



→ sensitivity to New Physics from box and penguin contributions

The decay $B_d \rightarrow K^* \mu^+ \mu^-$

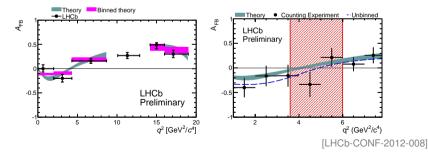
→ sensitivity to New Physics from box and penguin contributions



branching ratio $BR \sim 1.2 \cdot 10^{-6}$

measure angular variables, e.g.:

- → B_d -direction in the $\mu^+\mu^-$ rest system
- → forward-backward asymmetry vs $m_{\mu^+\mu^-}^2$
 - $A_{FB} = (n_F n_B)/(n_F + n_B)$
- \rightarrow sensitive to Wilson-Coefficients C_7, C_9
- → constrain existence & type of New Physics


Heb In the sults on $B_d \to K^* \mu^+ \mu^-$

[arXiv:1105.0376]

[LHCb-CONF-2012-008]

- data sample of 900 events, as clean as at the B factories
 - → largest sample in the world
- \blacksquare prediction for zero-crossing: $q^2(A_{FB}=0)=4.0-4.3\,{
 m GeV}^2/c^4$
- \Box current LHCb measurement: $q^2(A_{FB}=0) = 4.9 \pm \frac{1.1}{1.3} \,\mathrm{GeV^2/c^4}$
- earlier hints at discrepancies not confirmed
- improved results to be published soon

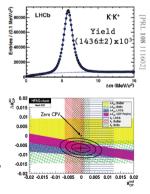
Physics highlights from the LHCb experiment - Selected results

HCB CP-violation in the charm sector

→ status summer 2012

- "CP violation . . . at the percent level signals new physics" [arXiv:hep-ph/0609178] Y. Grossman; (and many others)
- $\square \ \Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) A_{CP}(D^0 \rightarrow \pi^+\pi^-)$
 - → large event sample from 0.6 fb⁻¹
 - → self-tagging by decay $D^{*+} \rightarrow D^0 \pi^+$
 - → systematics cancel in the difference

Http://www.center.cente



→ status summer 2012

"CP violation . . . at the percent level signals new physics" [arXiv:hep-ph/0609178] Y. Grossman; (and many others)

 $\square \Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

- → large event sample from 0.6 fb⁻¹
- → self-tagging by decay $D^{*+} \rightarrow D^0 \pi^+$
- → systematics cancel in the difference
- result $\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)\%$
- large value confirmed by others
- interpretation: large strong phases...
 "We have shown that it is plausible that the SM accounts for the measured value...
 Nevertheless, new physics could be at play" [arXiv:1111.5000] J.Brod et al.

High Improved analysis with full 2011 statistics

- improved background suppression by factor 2.5
- two sources of D-mesons to probe systematics
 - → self-tagging charm decays $D^{*+(-)} \rightarrow D^0(\bar{D}^0)\pi^{+(-)}$
 - → semileptonic B-decays $B^{+(-)} \rightarrow \bar{D}^0(D^0) \mu^{+(-)} \nu$

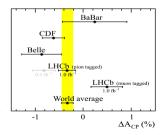
Htch Improved analysis with full 2011 statistics

- improved background suppression by factor 2.5
- two sources of D-mesons to probe systematics
 - → self-tagging charm decays $D^{*+(-)} \rightarrow D^0(\bar{D}^0)\pi^{+(-)}$
 - → semileptonic B-decays $B^{+(-)} \rightarrow \bar{D}^0(D^0)\mu^{+(-)}\nu$

new results [Moriond, 2013]

 $\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\%$ pion tagged $\Delta A_{CP} = (+0.49 \pm 0.30 \pm 0.14)\%$ muon tagged

High Improved analysis with full 2011 statistics



- improved background suppression by factor 2.5
- two sources of D-mesons to probe systematics
 - → self-tagging charm decays $D^{*+(-)} \rightarrow D^0(\bar{D}^0)\pi^{+(-)}$
 - → semileptonic B-decays $B^{+(-)} \rightarrow \bar{D}^0(D^0)\mu^{+(-)}\nu$

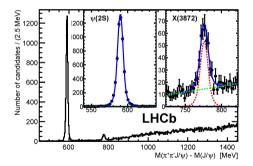
new results [Moriond, 2013]

 $\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\%$ pion tagged

 $\Delta A_{CP} = (+0.49 \pm 0.30 \pm 0.14)\%$ muon tagged

- → overall consistent picture
 light tension between measurements
 less spectacular CP-asymmetry
 - more data on disk . . .

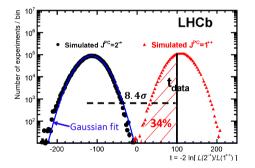
Hee Study of exotic states


→ determination of the quantum numbers of the X(3872)

- exotic state which does not fit into the standard scheme of hadrons
- In first observed by Belle: $B^+ \to X(3872)K^+ \to (J/\psi \pi^+ \pi^-)K^+$
- **u** quantum numbers limited to $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ by CDF

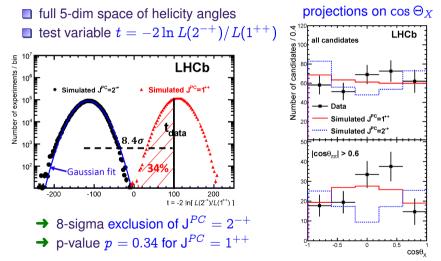
Heb Study of exotic states

- → determination of the quantum numbers of the X(3872)
 - exotic state which does not fit into the standard scheme of hadrons
 - In first observed by Belle: $B^+ \to X(3872)K^+ \to (J/\psi\pi^+\pi^-)K^+$
 - **Q** quantum numbers limited to $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ by CDF



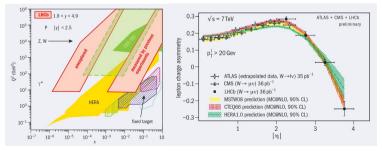
- → clean signal seen by LHCb
- enough statistics to test quantum number assignments

Http://www.communumbers.com/article/ar


- → likelihood-ratio test to decide between hypotheses
 - full 5-dim space of helicity angles
 - Let test variable $t = -2 \ln L(2^{-+})/L(1^{++})$

Http://www.antumnumbers.of.the X(3872)

Physics highlights from the LHCb experiment - Selected results


Heb QCD and electroweak studies

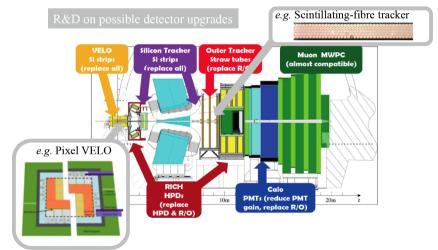
→ study W and Z production

- In forward electroweak gauge bosons from high-x low-x collisions
- large center-of-mass energy allows to reach very low x
- probe parton densities e.g. by W-charge asymmetry

$$A_{\mathrm{ch}}(\,W) = rac{\sigma(\,W^+) - \sigma(\,W^-)}{\sigma(\,W^+) + \sigma(\,W^-)} \sim rac{\sigma(u\,ar{d}) - \sigma(ar{u}\,d)}{\sigma(u\,ar{d}) + \sigma(ar{u}\,d)}$$

HICE 4. THE LHCD UPGRADE

→ increase integrated luminosity by 1 order of magnitude


Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	(50fb^{-1})	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	-	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi\gamma)$	-	0.13%	0.03%	0.02%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[14]	8 %	2.5%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-)$	1.5×10^{-9} [2]	$0.5 imes10^{-9}$	$0.15 imes 10^{-9}$	$0.3 imes10^{-9}$
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma (B \rightarrow D^{(*)}K^{(*)})$	$\sim 20^{\circ} [19]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	-	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	$0.40 imes 10^{-3}$	0.07×10^{-3}	-
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} [5]	$0.65 imes 10^{-3}$	$0.12 imes 10^{-3}$	-

Framework TDR for the LHCb Upgrade [CERN/LHCC 2012-007]

Hield Modifications to the detector

\rightarrow 40 MHz readout at $L = 2 \times 10^{33} cm^{-2} s^{-1}$

Physics highlights from the LHCb experiment - The LHCb upgrade

- ambitious schedule
 - 2011 Letter of intent for the LHCb upgrade
 - 2012 Framework TDR
 - → CERN/LHCC 2012-007
 - → submitted on May 25, 2012
 - 2012-2013 R&D for technical options
 - 2013 Subsystems TDRs
 - 2014-2016 tendering and production
 - 2017 acceptance testing
 - 2018 installation during long shutdown LS2
 - 2019 data taking with new detector
 - 2020- new physics results...

1116 5. Summary and Outlook

- excellent performance of LHCb
 - ➔ higher than design luminosity and pileup
 - ➔ integrated luminosity 3 fb⁻¹ from Run 1
 - → many ongoing analyses for LS1

Http://www.and Outlook

- excellent performance of LHCb
 - ➔ higher than design luminosity and pileup
 - → integrated luminosity 3 fb⁻¹ from Run 1
 - → many ongoing analyses for LS1
- many world best measurements
 - → B_s mixing frequency and phase
 - ➔ first observation of new states and decay modes
 - → most stringent limits for rare decays
 - ➔ tight constraints on New Physics models

HE 5. SUMMARY AND OUTLOOK

- excellent performance of LHCb
 - ➔ higher than design luminosity and pileup
 - → integrated luminosity 3 fb⁻¹ from Run 1
 - → many ongoing analyses for LS1
- many world best measurements
 - → B_s mixing frequency and phase
 - ➔ first observation of new states and decay modes
 - → most stringent limits for rare decays
 - ➔ tight constraints on New Physics models
- extension of physics program beyond b-physics
 - → elaborate charm physics program with intriguing results
 - ➔ soft-QCD, electroweak measurements and search for exotics
 - → participation in 2012/2013 pPb running

High 5. Summary and Outlook

- excellent performance of LHCb
 - ➔ higher than design luminosity and pileup
 - → integrated luminosity 3 fb⁻¹ from Run 1
 - → many ongoing analyses for LS1
- many world best measurements
 - → B_s mixing frequency and phase
 - ➔ first observation of new states and decay modes
 - → most stringent limits for rare decays
 - ➔ tight constraints on New Physics models
- extension of physics program beyond b-physics
 - → elaborate charm physics program with intriguing results
 - ➔ soft-QCD, electroweak measurements and search for exotics
 - → participation in 2012/2013 pPb running
- ambitious upgrade program