

Achim Denig

PRISMA Cluster of Excellence Collaborative Research Center CRC-1044 Johannes Gutenberg University Mainz

MESA: Precision Physics at Low-Energy High-Intensity Accelerators

December 11, 2012 DESY Seminar Hamburg

The Success of the Year 2012

Global Effort → Global Sugger Result July 2012 Higgs discovery → Last particle of the Standard Model discovered

But what about New Physics ?

New Physics is highly motivated

Observations:

- Baryogenesis
- Dark matter
- Neutrino sector

Conceptual:

- Unification of forces
- Gravity not included
- No theory of flavour structure
- Fine tuning for Higgs mass

But what about New Physics ?

2012: No clear indications for New Physics at the LHC

- New Physics mass exclusion limits up to ~ 1 TeV scale or beyond
- Indications for CP violation in the D-meson sector (compatible with SM?)
- Rare B-decays (LHCb):
 - → "smoking gun" signals for New Physics in flavour sector found to be in agreement with SM prediction;

LHCb BR measurement of $B_s \rightarrow \mu^+ \mu^-$

Two Long-Standing Puzzles

- Electroweak mixing angle sin²θ_w (legacy of LEP/SLD era):
 → discrepancy btw. LEP/CERN and SLC/SLAC
 - MESA Impact: Q PRISMA
 - → Precision measurement of sin²Q_w at low energies Precision Frontier
- 2) Anomalous magnetic moment of the muon (g-2)_μ
 → discrepancy btw. SM and direct measurement (3 ... 4 σ)
 MAMI / MESA Impact: PRiSMA
 → Direct search for MeV ... GeV scale New Physics to explain (g-2)_μ puzzle: Dark Photons Discovery Programme

Muon Anomalous Magnetic Moment: $(g-2)_{\mu}$

Supersymmetry and $(g-2)_{\mu}$?

*Only a selection of the available mass limits on new states or phenomena shown

Mainz Energy-Recovering Superconduct. Accelerator

MESA: High-Intensity CW Electron Accelerator 200 MeV @ 10 mA current

> Experiments in low-energy precision physics

- Precision measurement of electroweak mixing angle sin²Θ_W
- Search for the Dark Photon
- Precision Particle, Hadron, and Nuclear Physics

Challenging accelerator project

- High-gradient superconducting cavities (1.3 GHz)
- Energy-Recovering (ERL) technology

A Precision Measurement of $sin^2\Theta_w$ at MESA

 $sin^2\theta_W$ within the Standard Model and Beyond

Probably <u>the key parameter of the SM</u>: The Electroweak mixing angle θ_w

$$\sin^2 \Theta_{\mathbf{W}} = (\mathbf{e}/\mathbf{g})^2 = \mathbf{1} - (\mathbf{M}_{\mathbf{W}}/\mathbf{M}_{\mathbf{Z}})^2$$

Incorporates: SU(2)_LxU(1)_Y + Higgs Mechanism+ Renormalizability

Rad. corrections strongly correlated with masses of top quark, Higgs, New Physics!

EW Precision Physics after Higgs Discovery

- Low Energy experiments (e-e-, Neutrino scattering, APV)

Accelerator MESA (Extracted Beam Mode)

Extracted beam mode:

- \rightarrow 2 recirculating arcs
- \rightarrow 155 MeV beam energy @ 150 μ A

A Low- Q^2 Measurement of $sin^2\theta_W$ at MESA

Scattering of longitudinally polarized electrons on unpolarized protons

→ Z boson exchange in electron-proton scattering introduces parity-violating effect
 → Measure parity-violating Left-Right cross section asymmetry A_{LR}

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
hadron structure
$$\frac{\text{MESA goal:}}{\text{Measure parity-violating Left-Right}}$$
symmetry A_{LR} of 20 x 10⁻⁹ with 1.8% precision

Why low beam energies?

→ Dramatically reduced hadronic uncertainties from γZ box diagrams (QWEAK 1.2 GeV)
 → At low energies there is a significantly enhanced sensitivity to resolve New Physics

Precision Measurement of $sin^2 \Theta_W$

courtesy: Frank Maas

				1
	A4 / MAMI	MESA	Challenge	
Asymmetry	1-15 ppm	10-20 ppb	HC beam fluct	
Rates	100 MHz	0.2 - 1 THz	2kHz flipping	Main challenges
Polarimetry	1.5 % (4%)	0.5 %	hydro-Moller	
Electronics	Counting	Integrating	18 bit, 500 kHz ADCs	
Spectrometer	Calorimeter	Magnetic spectrometer	Solenoid/ Toroid	
Liquid H ₂ Target	120 W	3.9 kW	beam raster, new target cell	

- > 15 years of experience in parity-violating e-p measurements (A4@MAMI)
- Strong international collaboration (MØLLER expt.)

MESA contribution to $sin^2\theta_W$

MESA contribution to $sin^2\theta_W$

0.242 Moeller scattering E158 0.240 neutrino scattering 0.238 $\sin^2\theta \, {eff \atop W}$ **MESA** atomic parity violation (Cs) 0.236 forward-backward asymmetry LEP 0.234 Standard Model 0.232 Running of $sin^2\theta_w$ left-right asymmetry 0.230 SLAC 0.001 0.01 0.1 1 10 100 1000 momentum transfer [GeV]

MESA: $\Delta \sin^2 \theta_{W} = 4 \times 10^{-4}$

Complementarity btw. e⁻p and e⁻e⁻ Scattering

Complementarity btw. Q_w^p (MESA) and future Q_w^e (Moller@JLAB)

Possible Scenarios 2016+

A Search for the Dark Photon at MAMI and MESA

Dark Photon Search

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could explain presently seen deviation of 3.6σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

A way to relate the dark sector to the SM (coupling ~ ϵ^2)

Features à la Arkani-Hamed: A theory of Dark Matter

- \succ More than one Dark Matter particle \rightarrow Dark Sector
- \rightarrow dm + dm \rightarrow e+e- explains positron excess
- Astrophysical anomalies (PAMELA, FERMI, DAMA/LIBRA, INTEGRAL, ...) suggest dark photon mass on GeV mass scala (and lighter than 2M_p)
- \succ Dark Matter annihilation enhanced by γ' exchange

The $(g-2)_{\mu}$ *Parameter Range*

The $(g-2)_{\mu}$ *Parameter Range*

Searches using Fixed-Target Experiments

Bjorken, Essig, Schuster, Toro (2009) Low-energy, high-intensity accelerators are ideally suited for Dark Photon searches \rightarrow MAMI: E_y < 1.6 GeV \rightarrow A1 spectrometer setup

QED background processes:

1.6 GeV Electron Accelerator MAMI

A1 High Resolution Spectrometers

Dark Photon Search @ A1

2010 pilot run with A1/MAMI

- 4 days of data taking
- Beam energy 855 MeV
- Target: 0.05 mm Tantalum
- Beam current $\sim 100 \mu A$

→ Luminosity ~10³⁹ cm⁻²s⁻¹

Preliminary Results from 2012 A1-Run

Phase 2: Accessing the Low Mass Region

Accelerator MESA (ERL mode)

/orkshop to Explore Physics Opportunities with Intense, Polarized Electron beams with Energy up to 300 MeV MIT, Cambridge, MA March 14-16, 2013

With the availability of intense, polarized linac beams in the energy range up to 300 MeV, new types of experiments can be considered. The workshop is open to all good ideas but we solicit abstracts in the following categories:

- Parity violating electron scattering at low Q²
- Search for dark photons
- Precision nucleon structure
- Nuclear physics, inc. astrophysical reactions
- Technology: facilities, high power targets, high intensity polarized electron sources, precision electron polarimetry, optimized detectors and high brightness beam diagnostics

Supported by:

💙 PRÍSA

Organizing Committee:

Kurt Aulenbacher (U. Mainz) Roger Carlini (JLab) (Co-chair) Achim Denig (U. Mainz) Roy Holt (ANL) Peter Fisher (MIT) Krishna Kumar (UMass, Amherst) Frank Maas (U. Mainz) (Co-chair) Bill Marciano (BNL) Richard Milner (MIT) (Co-chair) George Neil (JLab) Marc Vanderhaeghen (U. Mainz)

For information contact:

http://web.mit.edu/Ins/PEB_Workshop/ Email: pebworkshop@mit.edu

Jefferson Lab

Conclusions

\succ sin² θ_{w} : Frontier program in electroweak precision physics

Sensitivity to New Physics up to 7 TeV

> Dark Photon: Fundamental discovery potential

High-risk - high-gain experiment

Hadron and nuclear physics program at MESA

- Proton radius
- Strangeness content of the nucleon
- Neutron skin of nuclei

Can be done with MESA: 200 MeV Electron Accelerator

W3 professorship Experimental Hadron and Particle Physics

"MESA: A must-do facility ... for the price of an experiment" (B. Marciano, 2011 MESA workshop)