Cosmic Jets and Gamma Rays.

Gernot Maier

HELMHOLTZ

Cosmic Jets and Gamma Rays.

 > Gamma-ray astronomy
> Observing gamma rays
> Observing particle acceleration in jets
> The Cherenkov Telescope Array (CTA)

Gernot Maier

HELMHOLTZ

Gamma-ray astronomy: GeV-TeV photon astronomy

~2000 sources in the MeV-GeV range ~150 sources in the >100 GeV range

Fermi LAT 3-years sky map > 1 GeV

GeV/TeV radiation is ubiquitous to a wide range of astrophysical environments non-thermal processes

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Gamma-ray astronomy: GeV-TeV photon as

How do cosmic particle accelerators work?

~2000 sources in the MeV-GeV range ~150 sources in the >100 GeV range

Fermi LAT 3-years sky map > 1 GeV

GeV/TeV radiation is ubiquitous to a wide range of astrophysical environments non-thermal processes

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Gamma-ray astronomy: GeV-TeV photon as

How do cosmic particle accelerators work?

Science News Reports on the Top Mysteries

Science June 2012

Victor Franz Hess

true mysteries must have staying power

(as opposed to mere "questions" that researchers might resolve in the near future)

Cosmic Jets and Gamma Rays

Cosmic Jets and Gamma Rays

Fermi LAT 3-years sky map > 1 GeV

How do jets accelerate particles to highest energies?

Ultra-high energy cosmic rays - 10²⁰ eV

Active Galactic Nuclei

Active Galactic Nuclei

blue light: synchrotron radiation from HE electrons

core and

accretion disk

jet: relativistic hot, magnetized plasma outflow

hot spots: shocked jet plasma

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Active Galactic Nuclei: The power of accretion

Gravitational energy released : $\Delta E_{acc} = GMm/R_*$

Nuclear fusion of hydrogen to helium: $\Delta E_{nuc} = 0.007mc^2$

Active Galactic Nuclei: The power of accretion

 $1 \text{ erg} = 10^{-7} \text{ J}$

Active galactic nuclei & gamma-ray emission

Active galactic nuclei & gamma-ray emission

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Doppler boosting in jets

Ground-based gamma-ray astronomy

Extensive Air Showers and Cherenkov Emission

Cherenkov emission angle depend on atmospheric density

150 m

charged

particles in

an air

shower

distribution of Cherenkov photons on the ground

Extensive Air Showers and Cherenkov Emission

distribution of Cherenkov

photons on the ground

weak (~10 ph/m²), short (~ns), blue (300-550nm) flash of light

Imaging Atmospheric Cherenkov Telescopes VERITAS

12 m diameter reflector (106 m² mirror area) Imaging Atmospheric Cherenkov Telescopes VERITAS 499 pixel PMT Camera

12 m diameter reflector (106 m² mirror area) Imaging Atmospheric Cherenkov Telescopes VERITAS 499 pixel PMT Camera

Sophisticated trigger system needed to suppress night sky background (120 MHz -> 200 Hz)

> 12 m diameter reflector (106 m² mirror area)

Very High-Energy Observatories

MAGIC

H.E.S.S.

Location	Southern Arizona
Array configuration	4x12m telescopes
Energy range	100 GeV - 30 TeV
Energy resolution	15-20%
Field of view	3.5 deg
Angular resolution	<0.1 deg
Sensitivity	1% Crab in <30 h
Duty cycle	10-12% (1200 hr/yr)

VERITAS

Variability: related to accretion or ejection?

Jets on all scales: universal mechanism?

key features: central compact object, an accretion disk, a jet, non-thermal particle population, V_{jet}/V_{escape}~1

Jets on all scales: universal mechanism?

key features: central compact object, an accretion disk, a jet, non-thermal particle population, V_{jet}/V_{escape}~1

Object	AGN	$\mu – {\rm quasars}$	H–H	GRB
Size [pc]	$\sim 10^5$	$\lesssim 10$	< a few	$\sim 10^{-5} - 10^{-1}$
Luminosity $[L_{\odot}]$	$10^7 - 10^{19}$	$< 10^{5}$	$10^1 - 10^4$	10^{21}
Central mass $[M_{\odot}]$	$10^6 - 10^9$	1 - 10	< 10	1 - 10
Lorentz factor $[\Gamma]$	$10 - 10^3$	> 10	$\lesssim 1.0000005$	100 - 300
Magnetic field [G]	~ 100	~ 100	< 200	$\sim 10^{16}$

Huarte-Espinosa & Mendoza (2006)

Microquasars

massive star dense and isotropic photon field **jet** visible in radio (synchrotron emission of accelerated electrons)

accretion disk thermal X-rays T_{disk} ~ M^{-1/4}

jet / ISM interaction

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Microquasars - the nice side

Binaries are particle accelerators operating under varying, but **regularly repeating**, environmental conditions

Microquasars - the nice side

Microquasars - the complicated side

wind - jet interaction

temporary accretion disks, disk precession

clumpy wind

stellar disk (non-stationary, precessing, ...)

jet interaction with circumstellar environment

unknown geometry (e.g. inclination) unknown nature of compact object Fluxes can be modulated by: geometry photon fields matter densities magnetic fields

.....

X-ray binaries as gamma-ray emitters

- > Liu catalogues
 - 114 high-mass X-ray binaries
 - 187 low-mass X-ray binaries
- > <20 microquasars known</p>
 - identified by radio jet

Name	Companion	Accretor	Jet size (AU)			
HMXBs						
LS I +61 303	B0V	NS/BH?	10-700			
V 4641 Sgr	B9III	Black Hole	-			
LS 5039	O6.5V((f))	NS/BH?	10-1000			
SS 433	evolved A	NS/BH?	$10^{4} - 10^{6}$			
Cygnus X-1	O9.7Iab	Black Hole	40			
Cygnus X-3	WNe	NS/BH?	10 ⁴			
LMXBs						
Circinus X-1	Subgiant	Neutron Star	104			
XTE J1550-564	G8-K5V	Black Hole	10 ³			
Scorpius X-1	Subgiant	Neutron Star	40			
GRO J1655-40	F3/5IV	Black Hole	8000			
GRS 1915+105	K-M III	Black Hole	$10 - 10^4$			
GX 339-4		Black Hole	<4000			
1E 1740.7-2942		NS/BH?	10 ⁶			
XTE J1748-288		NS/BH?	104			
GRS 1758-258		NS/BH?	10 ⁶			

Name	GeV	TeV
PSR B1259-63	~	~
LS 5039	✓	~
LS I +61 303	v	~
LS VI +05 11(HESS J062+057)	×	~
Cygnus X-1	>	(?)
Cygnus X-3	✓	×
1FGL J1018.8-5856	~	×

- Be star + neutron star or black hole
- > 26.5 day orbit; unknown inclination

Collaboration: A.Smith, J.Holder

 $\phi = 0.5$

high X-ray activity throughout orbit (large variations) radio emission peaks at periastron and apastron MeV-GeV emission throughout orbit (2008-2009: peak after periastron)

LS I +61 303: VERITAS observations 2006-2012

Collaboration: A.Smith, J.Holder

LS I +61 303: VERITAS observations 2012

LS I +61 303: VERITAS observations 2012

Collaboration: A.Smith, J.Holder

Situation far more complicated...

HESS J0632+057 - A new TeV binary!

- > discovered by H.E.S.S. in 2004
- until 2011: unidentified point source without obvious counterpart
- VERITAS: evidence for variability

- MWC 148: B0pe star; d=1.5 kpc
- > no binary companion resolved in optical observations

HESS J0632+057 - long-term X-ray observations

Collaboration: A. Falcone, J.Holder

Z-transformed discrete correlation function: period of 315⁺⁶-4 days

Flux (0.3-10 keV) [x10⁻¹² erg cm⁻² s⁻¹]

XRT data supplied by the UK Swift Science Data Centre at the University of Leicester.

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

HESS J0632+057 - phase folded light curve

Collaboration: A. Falcone, J.Holder

HESS J0632+057 - phase folded light curve

Collaboration: A. Falcone, J.Holder

Color coding: TeV observation in different years

Gamma-ray binaries....

- > 4 binaries detected at energies > 100 GeV
 - (expected a larger population from stellar evolution models)
 - first binary detected through gamma-ray observations (HESS J0632+057)

> each system is unique

- lack of exact orbital solutions and inclination hampers identification of compact object (e.g. pulsation) and emission mechanisms
- > role of massive star (Be or O type)
 - (62+1 Be/X-ray binaries in the galaxies)
- > no clear identification of gamma-ray microquasars >100 GeV (yet)
 - LS I +61 303 best candidate? (see e.g. Masi et al 2012)
- > observations difficult due to low fluxes and long orbital periods
- > unhealthy situation of having far more emission models than data points....

Collaboration

Moonlight observations Cosmic Jets and Gamma Rays June 2012 Gernot N (Photo by N.Otte)

Moonlight observations

The Cherenkov Telescope Array (CTA)

Array of >50 telescopes factor 10 improvement in sensitivity 20 GeV to >300 TeV energy range significantly improved angular resolution two observatories: North and South

The Cherenkov Telescope Array (CTA)

Array of >50 telescopes factor 10 improvement in sensitivity 20 GeV to >300 TeV energy range significantly improved angular resolution two observatories: North and South

High-energy section

limitation: effective area telescopes with ~4-7 m ∅ energy range: > 5 TeV

Midsize telescopes

limitation: gamma/hadron separation telescopes with 12 m Ø energy range: 100 GeV - 10 TeV

Low energies

Jets and Gamma R

limitation: photon collection and gamma/hadron separation large telescopes with 23 m Ø energy threshold: some 10 GeV

Gernot Maier

The Cherenkov Telescope Array (CTA)

CTA Consortium: world-wide effort

>1000 members Design Prototyping 2011-2014, Construction 2015-2019

VII VAM.

significant German contribution through DESY, Max-Planck Institutes (Heidelberg, München), 6 Universities

Transient sensitivity - CTA and Fermi LAT

4 bins per decade energy (equal bin size on log scale)

Cherenkov Telescope Array: Array optimization

Cherenkov Telescope Array: Site selection

DESY

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Summary

- > Jets are powerful particle accelerators
- > Binaries constitute a small but unique population of highenergy sources
 - first binary detected through gamma-ray observations
 - excellent laboratories for particle acceleration, gamma-ray production, emission and absorption processes
 - maybe a bit complicated..."just" a matter of better data
- CTA will be able to probe the physical processes in jets with high precision
- ...and do many more cool things

3C 272

m | Camma ray Astronomy | May 2012

magnetic field lines central object (rotating)

DESY

accretion disk (differential rotation)

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

Fermi acceleration in shocks and turbulences along the jet

Field of View

One year of Fermi LAT (FOV 20% of sky)

Three years of VERITAS

observations (FOV 3.5°)

Gernot Maier | Cosmic Jets and Gamma Rays | June 2012

More telescopes are better...

