Highlights of CMS Physics Results at 7 TeV

María Aldaya

DESY

LHC Forum, DESY, 13 December 2011

The Compact Muon Solenoid detector

21m long, 15m in diameter
14000 tons

ECAL

Welcome to the inverse femtobarn era!

 All subdetector components operation at the level > 98.5%

- Recorded 5.2 fb⁻¹ of 5.7 fb⁻¹ delivered with > 90% data-taking efficiency
- More than factor of 100 improvement over the 2010 statistics
- Max. inst. *L* ≈ 3.54 × 10³³ cm⁻²s⁻¹
- Data certification for physics analysis:
 - 85% for all systems perfect
 - 90% for muon analysis (w/o calorimeters)
- Luminosity uncertainty is 4.5%

Excellent performance of the CMS detector in 2011

 High multiplicity of interactions in a single collision of two proton bunches (pile-up)

 Number of reconstructed vertices after the August Stop increased by factor 1.5

- Fills start with ~15 pile-up interactions
- CMS can deal with this: high granularity
 → relatively low occupancies

 Good tracker & vertexing performance: able to efficiently reconstruct vertices separated in z by less than 1mm

- Triggers able to cope with this challenging data-taking conditions
- Offline algorithms subtract activity not coming from event primary vertex
 - Protects performance of physics objects like jets, missing energy, and isolated leptons

Physics Results

The latest results are available here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

DESY-UHH contribution to physics analysis

Analysis:

Multiparton interactions/UE

MC tuning

Forward energy flow, hard forward/central jets

Drell-Yan and Zbb cross sections

Top-pair (differential) cross sections in (I+jets, dileptons), all hadronic channels

Cross section ratio σ(ttbar)/σ(Z)

Simultaneous top mass and JES measurement in I+jets

Top mass determination from cross section

SUSY searches in single photon, all hadronic, single tau

SUSY searches in SS and OS dileptons, single leptons with b-tag

SM and MSSM Higgs searches: H(A)->ττ->II , bbH(A)->bbbb

Predictions based on HERAPDF, PDF fits using CMS data

Tools for analysis:

DQM / data certification Alignment Btagging Trigger development Jet energy calibrations HERAFitter development

From the Standard Model to the unknown

Deep understanding of SM processes necessary to investigate Higgs/New Physics processes

Jet cross-section measurement

- Jets with p_T up to 1100 GeV and $|\eta|$ < 3
- Good agreement, within uncertainties, with NLO QCD predictions and up-to-date PDFs in over 10 orders of magnitude!

- Minimum bias and hard dijets at 0.9, 7 TeV in 3 < $|\eta|$ < 5
- Sensitive to multiparton interaction modelling
- No model describes data at all energies
- → Valuable input for tuning of MC generators

Electroweak: diboson cross sections (1.1 fb⁻¹)

Top quark physics

Pairwise production of top and Top quark decays into Production of single top quarks antitop via $q\overline{q}$ annihilation or via electroweak force b quark and W boson gluon fusion l⁺, q a W W^+ 00000 v, <u>q</u>' s-channel b t-channel Event-classification depending on W-decay: - dilepton - lepton+jets 0000 - allhadronic 00000 Dominant process at LHC tW-channel

Top quark mass in I+jets (36 pb⁻¹)

t-tbar mass difference in μ+jets (1.09 fb⁻¹)

Test of CPT invariance: particle and antiparticle must have the same mass 2σ deviation reported by CDF [PRL 106, 152001 (2011)]

- Use μ +jets ttbar events (positive/negative μ)
 - 1 isolated high- $p_T \mu$, ≥ 4 jets
- Mass reconstructed from hadronic t, tbar decay
 - \bullet Kinematic fit from the jet combination with lowest χ^2
- World's best measurement so far!

 $\Delta m_t^{\text{measured}} = -1.20 \pm 1.21 \text{ (stat)} \pm 0.47 \text{ (syst) GeV}$

Still statistically limited

JES uncertainty largely cancelled in the mass difference

CMS-PAS TOP-11-019

16

17

LHC Forum, 13.12.11

Precision limitations:

- systematic uncertainty of the measurement
- PDF uncertainty + α_{s} uncertainty in the PDF

Good agreement between different calculations Results consistent also with other experiments

CMS-PAS TOP-11-008

 Maximize a joint likelihood of measured and predicted cross section to extract the top mass

top mass measurements

Top mass from cross section (1.14 fb⁻¹)

Single top in tW mode (2.1 fb⁻¹)

Test unitarity of CKM matrix ($\sigma \propto |V_{tb}|^2$), background for Higgs searches

Good/bad news: looks like ttbar; easy to observe, but much ttbar background

 Select dilepton events with exclusively one b-tagged jet, Z veto, veto evts. with add. loose jets (tagged)

Use two ttbar-enriched sidebands to constrain ttbar contribution and b-tagging efficiency (main syst uncert)

- Drell-Yan bg also determined from data
- Observed significance: 2.7σ (1.8σ expected)
- Observed cross section:

 22^{+9}_{-7} (stat \oplus syst) pb

Searches for Supersymmetry

- Generic MET signatures
 - Categorized by number of leptons, photons or jets
- Look for excess production of these signatures wrt SM prediction
- No excess found? \rightarrow set limits

M. Aldaya

20

LHC Forum, 13.12.11

Within the constrained SUSY models we have crossed the boundary of disfavouring gluinos and squarks with masses up to 1 TeV

Searches for the SM Higgs

Hot from the press !!

- The LHC is performing very well
 - Entered the 1/fb era and accumulating data fast
- The CMS detector is in excellent shape
 - Operation, performance, detector understanding, analysis tools
- CMS has completed a comprehensive set of SM measurements at 7 TeV
 - Some have already reached impressive levels of precision
- So far, good agreement with SM predictions
- SUSY searches with sensitivity to squark/gluino masses in the range 0.5 - 1 TeV
- Higgs prospects very promising for 2012
 - SM Higgs will either be discovered or ruled out soon

More exciting results to come in 2012, stay tuned !

Additional information

- Around 5.5 fb⁻¹ delivered to ATLAS & CMS
- Peak luminosity increased from 1.2×10^{33} to 3.7×10^{33} cm⁻² s⁻¹
- Record weekly luminosity of 550 pb⁻¹
- Collected per (good) day more data than 4 x entire 2010 run

Improvements in 2011:

- 50 ns bunch spacing (started with 75 ns)
- Increase bunch charge up to $N = 1.45 \times 10^{11}$ protons per bunch
- Increase focusing to $\beta^* = 1m$
- Reduction of emmittance ϵ , to ~ 2 μ m
- Max. number of bunches = 1380 at 50 ns

A slice of CMS

JES, JER, MET

Jet energy scale known to few % Jet resolution 10-15%

Missing energy resolution improvement with Particle Flow

- Detector is sufficiently granular to reconstruct and identify individual particles using best combination of all subdetector information
 - "Particle flow" technique
 - Redundant information gives better calibration, resolution, etc.
- Jet energies, missing energies computed from individual particles
 - Leads to relatively small corrections and thus small uncertainties on jet-energy scale (JES), good resolution on jet and missing energy.

0.3

0.2

0.1

Muon Charge Asymmetry

CMS preliminary

 $p_{\tau}^{\mu} > 25 \text{ GeV}$

■ W→ μν

234 pb⁻¹ at

MCFM:

Muon Pseudorapidity

CT10W

HERAPDF1.5 (prel.)

MSTW2008NLO

2

m

 $\sqrt{s} = 7 \text{ TeV}$

W->μν charge asymmetry: CMS-PAS EWK-11-005

 More W⁺ than W⁻ due to excess of u quarks over valence d quarks in pp collisions

• Asymmetry = $f(\eta)$, since u carries higher fraction of proton momentum

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

In terms of valence quarks:

$$\mathsf{A} \approx \frac{u_v - d_v}{u_v + d_v + 2u_{sea}}$$

Very sensitive to PDFs

Precision of the measurement good enough to provide new input to the PDF global fits

Differences in predictions are related to not well known valence quarks at low $x \rightarrow$ LHC data help to constrain PDFs

HERAFitter project

HERAFitter: a set of PDF fitting tools jointly developed by the H1 and ZEUS collaborations for determination of the parton density functions

HERAFitter	Col	hosted by CEDAR HepForge
 Home Subversion Tracker Wiki 	HERAFitter HERAFitter is a set of PDF fitting tools jointly developed by the H1 and ZEUS co determination of the parton density functions. The HERAFitter codes were used HERAPDF sets. The current distribution contains a BETA-version of the first code released with package, the H1FITTER program.	llaborations for d to obtain the nin the HERAFitter

Out of the box:

- H1Fitter produces the central fit for HERAPDF1.0
- DY and jet packages can be used to fit pp, ppbar data
 - → Can be used to study the direct impact of CMS data (jet, DY, W asymmetry, top) with minimal necessary input from HERA

HERAFitter package available online at http://projects.hepforge.org/herafitter/

M. Aldaya

LHC Forum, 13.12.11

- Require 2 OS muons, E_T^{miss}
- Separate jet categories to exploit characteristics of production mode:
 - SM: 2 jets (VBF) or not
 - MSSM: at most 1 b-jet or at most 1 jet (untagged)
- Likelihood fit to $m_{\tau\tau}$ visible mass distribution

No evidence of any signal is observed

0000000

CMS-PAS HIG-11-009

Very close or better than 1xSM in the full mass range. Optimization of some analyses still ongoing. Additional sub-channels under study.

Hot from the press !!

We cannot exclude the presence of the SM Higgs boson below 127GeV because of a modest excess of events interesting the region between 115 and 127 GeV

The excess at low mass is produced by a broad excess driven by the low resolution channels (H $2\tau\tau$, H2WW, H2bb, center), modulated by the localized excesses seen by the high resolution channels (H $2\gamma\gamma$ and H2ZZ, right)

Observed disfavoured mass range at 95% CL: 141-476 GeV Observed disfavoured at 99% CL: 146-443 GeV except 3 small regions between 220-320 GeV Expected disfavoured mass range at 95% CL: 124 – 520 GeV