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Overview 

• Introduction 
• The Experiments 

– MINOS 
– T2K 

• Measurements 
– Disappearing muon neutrinos 
– Appearing electron neutrinos 

• Global Analysis 
• Summary 
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Neutrino Mixing 
The PMNS Matrix 

•  Assume that neutrinos do have mass: 
–  mass eigenstates ≠ weak interaction eigenstates 
–  Analogue to CKM-Matrix in quark sector! 

1

2

3

e

Uµ

τ

ν ν

ν ν

ν ν

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

weak 
“flavour eigenstates” 

Mass eigenstates 
m1, m2, m3 

Unitary mixing matrix: 
3 mixing angles  

& complex phases 

Pontecorvo-Maki-���
Nakagawa-Sakata 	



2 2
ijwith cos( ), sin ,  mixing angle and mass  differenceij ij ij ij ijc s (θ ) θ Δmθ= = = =

2

3

1 2 3 13 13 12 12

1 2 3 23 23 12 12

1 2 3 23 23 13 13

1 0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0

i
e e e

i

ii

U U U c s e c s
U U U U c s s c e

U U U s c s e c e

δ

δ
µ µ µ

δδ
τ τ τ

−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

3 Sep 2011 



Neutrino Oscillations 

•  If mass and weak eigenstates are different: 
–  Neutrino is produced in weak eigenstate 
–  It travels a distance L as a mass eigenstate 
–  It will be detected in a (possibly) different weak 

eigenstate 
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Measuring “Solar” Neutrinos 

Sep 2011 5 

•  Neutrinos are produce in the sun 
via nuclear fusion 

•  Only a small fraction of the 
expected neutrinos flux is 
detected on earth 

•  Electron neutrinos disappear 
–  Solar matter effects are important 

•  Same disappearance observed 
in electron anti-neutrinos from 
reactors 



Two Main Experiments 

•  MINOS 
–  Mature experiment taking data since 2005 
–  Beam generated by Main Injector at Fermilab 
–  Far Detector close to Canadian border in Soudan 

Underground mine 

•  T2K 
–  Started taking data in 2010 
–  Beam generated at J-PARC 

• New accelerator centre on Japanese east coast 

–  Far detector is SuperKamiokande 
• on the Japanese west coast 
• Mature detector taking data since many years 
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735 km 

(12 km) 

Experimental Setup 

•  MINOS  
(Main Injector Neutrino 
Oscillation Search) 
–  A long-baseline neutrino 

oscillation experiment 
–  Near Detector at Fermilab to 

measure the beam 
composition 

–  Far Detector deep 
underground in the Soudan 
Underground Lab, 
Minnesota, to search for 
evidence of oscillations 
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Making Neutrinos 

•  Neutrinos from the Main Injector (NuMI) 
•  10 μs spill of 120 GeV protons every 2.2 s 
•  300 kW typical beam power 
•  3 Í1013 protons per pulse 
•  Neutrino spectrum changes  

with target position 

8 

Sep 2011 



9 

Protons on Target 
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MINOS Detectors 
alternating layers of steel plates and scintillator strips in a ~1.3 T toroidal magnetic field 

NEAR FAR 

735 km from the target 
5.4 kilotons 
8 m tall planes 
486 planes (30 m) 
700 m underground 
Few neutrino interactions/day 

1 km from the target 
1 kiloton 
~4 m tall planes 
282 planes (15 m) 
100 m underground 
Few neutrino interactions/spill Sep 2011 
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MINOS Technology 

Multi-anode PMT 

Extruded 
PS scint. 
4.1 x 1 cm 

WLS fiber 

Clear 
Fiber cables 

2.54 cm Fe 

U V planes 
+/- 450 

U V U V U V U V 

Steel thickness: 2.54 cm (~1.4 rad. lengths) 
 

Strip width:     4.1cm 
Moliere radius  ~3.7cm 
 

Strips in adjacent planes are oriented 
orthogonally enabling 3D reconstruction 
 

Each strip is read out by a wavelength 
shifting fiber connected to a multi-anode 
photomultiplier tube 

U/V strips 
oriented 
±45o  from 
vertical 

beam 
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MINOS Far Detector 
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Eν = Eshower + pμ 
Energy resolution 

• π±: 55%/√E(GeV)  

• μ±: 6% range, 10% curvature 

Event Topologies 

νμ CC Event νe CC Event 
UZ 

VZ 

long μ track & hadronic 
activity at vertex 

3.5m 

NC Event 

short event, often diffuse 

1.8m 

short, with typical EM 
shower profile 

2.3m 

Monte Carlo 
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Hadron Production Tuning 
•  Select events with muon and hadronic shower 

–  Use different beam configurations 
•  Hadron production of proton target has big uncertainties  

–   neutrino flux unknown 
•  Use Fluka2005 hadron production 

–  modify: re-weight as f(xF,pT) 
•  include in fit 

–  Horn focusing, beam misalignments, neutrino energy 
scale, cross section, NC background 

LE HE ME 

Weights 
applied  
vs pz & pT low energy 

beam 
region 
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Near to Far Extrapolation 

•  Pion/Kaon decay kinematics 
are encapsulated in matrix 

•  Measured ND spectrum is 
transported to FD 

•  Largely reduce systematics 
–  hadron production 
–  cross section 
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Spectrum 

 

Expect 2451 without oscillations 
  includes ~1 CR µ, 8.1 rock µ, 41 NC, ~3 ντ BG 

See only 1986 in the FD.   

Split up sample into five bins by 
energy resolution, to let the best 
resolved events carry more 
weight (plus a sixth bin of 
wrong-sign events) 
 
Fit everything simultaneously…  Sep 2011 18 



Allowed Region 
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Anti-neutrino Mode 

€ 

νµ = 91.7%
ν µ = 7.0%

νe +ν e =1.3%

Neutrino mode 
Horns focus π+, K+ 

Monte Carlo!

Antineutrino mode 
Horns focus π-, K- 

!
  Monte Carlo 

€ 

ν µ = 39.9%
νµ = 58.1%

νe +ν e = 2.0%

120	
  GeV	
  
protons	
  

Focusing Horns 

2 m 

675 m 15 m 30 m 

Target Decay Pipe 

π+	
  

π-­‐	
  

νμ	
  

νμ	
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Anti-Neutrino Results 

•  Prediction for no oscillations 
–  273 events 

•  Observed 
–  193 

•  7.3 σ deficit 
Sep 2011 21 



Parameter Space 
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T2K Experiment 
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Design Principle 

•  Main feature : 
off-axis beam to reduce high-energy tail 
–  Narrow-band beam around oscillation 

maximum 
–  Feed-down from miss-reconstructed DIS/

resonance events at SK into analysis region 
reduced. 24 

π→μν	


118 m	



off-axis (2.5°)!

(30 GeV from 
MR 
synchrotron) 

0
º 
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Super-K detector 
•  Located in Mozumi mine 2700 m.w.e. 

overburden 
•  22.5 kt fiducial mass water Cherenkov 

detector 
–  Inner detector ~ 11000 20-inch PMTs 
–  Outer veto ~ 1900 8-inch PMTs 

•  New 100% livetime DAQ system 
•  Excellent μ/e separation from ring 

shape/opening angle 
–  Probability to reconstruct µ as e ~ 1% 
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e-like!

MC 

μ-like!

MC 
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Beamline MC 
•  Flux estimated from beamline MC with inputs from data 
•  Primary beam data from beamline monitors 
•  Hadronic interactions 

–  Pions - use CERN NA61/SHINE pion measurement (large 
acceptance: >95% coverage of ν parent pions) 

–  Pions outside NA61 acceptance, other interaction (inc. 
kaons) based on FLUKA simulation 

–  Secondary interactions outside the target based on 
experimentally measured cross-sections 

•   GEANT3 transport simulation used downstream of target 
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NA61/SHINE 
•  Goal: measure hadron(π, K) 

yield distribution in 30 GeV p 
+ C inelastic interaction 

•  High-acceptance ToFs and 
spectrometers 

•  2cm thin target - 4%λI 

•  π+ analysis: 
–  dE/dx only analysis for low 

momenta 
–  dE/dx+ToF selection for high 

momenta 

27 
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Data Sample 

•  All good physics data taken to date was used for this 
analysis: 
–  Run 1 – 3.23x1019 p.o.t with 50kW beam, Jan '10 – Jun '10 
–  Run 2 – 11.08x10^19 p.o.t. with 145kW beam, Nov '10 – Mar '11 

•  Total 1.43x1020 p.o.t. – 2% of T2K final goal 

28 

accum
ulated # of protons"

proton per pulse"

Run 1" Run 2"

50kW!

145kW!
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Near detectors 

•  Muon monitor for spill-spill 
monitoring 

•  On-axis detector (INGRID) measures 
beam intensity/direction 
–  ~1 mrad precision in 1 day 

•  ND280 detector at same off-axis 
angle as SK 
–  Detailed flux measurement 
–  Exclusive cross-section measurements 

29 
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ND280 detector 
•  0.2 T magnet (recycled from UA1) 
•  Plastic scintillator detectors: 

–  Fine Grained Detector (FGD) – 1.6 
ton fiducial mass for analysis 

–  π0 detector (P0D) 
–  ECals and SMRD 

•  Time projection chambers (TPC) 
–  better than 10% dE/dx resolution 
–  10% momentum resolution at 

1GeV/c 
•  For 1st analysis use total νμ-CC 

event rate in FGDs only 

30 

νμ	


FGD2	



TPC3	

TPC2	

TPC1	



FGD1	

dE/dx (TPC: data)!

Sep 2011 



ND280 Input 
•  Measure inclusive νμ-CC 

event rate in near detector 
–  Total event rate, no shape 

measurement for this analysis 
–  Events with vertex in FGD and 

muon-like track in TPC 
selected 

–  Achieve purity of 90% νµ-CC 
 

•  Good agreement of data 
with beam MC+neutrino 
interaction generator, without 
any tuning to ND data. 
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Selecting Events in SK 

•  Select events 
–  fully contained  
–  Consistent with expected 

arrival time  
–  1ring 
–  muon like 

•  Compare energy spectrum 
with expectation 
–  Beam simulation  
–  Near detector 

measurement 
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Energy Spectrum 

•  Fit to muon neutrino 
energy spectrum 
–  With & without fitting 

systematic parameters 
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World Knowledge 

35 

from atmospheric/ accelerator ν 
(Super-Kamiokande, MINOS, T2K) 

from solar/reactor ν 
(Kamland, SNO) 

Normal Hierarchy    or    Inverted Hierarchy? 
Open questions: 

!m21
2 = 8"10#5eV2

!12 $ 34
!

!m32
2 = 2.3"10#3eV2

!23 $ 45
!

!13 = ?
" = ?
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Appearance analysis 

•  Basic idea 
–  Apply selection criteria to Super-K data to isolate νe-CCQE 

events 
 
 

–  Compare with expected number of background events → 
measure appearance probability 

•  Backgrounds 
–  Intrinsic νe contamination from µ, K decays in decay pipe 
–  NC-π0 interactions of νµ (missed or merged gamma-rays → 

single e-like ring detected) 

38 γ (lost) 
γ (e-like ring) 
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Estimate SuperK Event Rate 

•  Events at SK: 
–  Signal events, depending on  νµ flux and oscillation 

parameters 
–  νe background, depending on intrinsic beam νe flux 
–  νµ background, depending on νµ flux 

 

•  Inputs to event number estimation 
–  ND280 νµ-CC event rate   
–  Beam MC predictions for near and far detector rates, 
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F/N ratio from MC 

Measured ND280 
event rate 
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Total BG Estimate 

•  Final estimates:  
multiply MC predictions by data/MC ratio of event 
rate in ND: 
 
 
 
 

•  Calculate total for 1.43 x 1020 p.o.t., θ13=0: 

•  νμCC BG is insignificant 
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Systematic Errors 
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Smaller for θ13 ≠ 0 
due to small uncertainties on 
signal 



Selection (1) 

Single e-like ring 

42 

e-like	

 μ-like	



(sin22θ13 = 0.1)" (sin22θ13 = 0.1)"
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Selection(2) 

Visible energy >100MeV No decay electron 

(sin22θ13 = 0.1)" (sin22θ13 = 0.1)"
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Selection (3) 

“P0LFit” invariant mass cut Reconstructed nu energy <1250MeV 

(sin22θ13 = 0.1)" (sin22θ13 = 0.1)"
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Final Result 
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p-value of 0.7% for null 
hypothesis 

 

Equivalent to 2.5σ 

6 candidate νe events after all 
cuts 

 

Expected BG of 1.5+/-0.3 events 
 for sin22θ13=0 



Vertex distribution 
•  Most events clustered at high R in upstream part of FV 

–  No corresponding excess in OD or outside FV - no 
evidence of any plausible background contamination 

•  Difficult to meaningfully calculate probability of this 
distribution after the fact 
–  K.S. test on the R2 distribution yields a p-value of 3% 
–  Next analysis will define procedure to check this distribution 

before looking at the data 
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Outside 
FV 

beam 
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Oscillation fit 
•  Contour  calculated using Feldman-Cousins method: 

–  Ensure correct coverage by performing many toy experiments 
at each point in (θ13, δCP) space and finding δχ2

crit(θ13, δCP) s.t. 
(68%, 90%) of toy experiments have  δχ2< δχ2

crit at true (θ13,δCP) 
–  Exclude points in (θ13,δCP) space where  δχ2(θ13, δCP; data) > 
δχ2

crit(θ13, δCP) 
–  Systematics included in toy experiment generation 
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Library Event Matching (LEM) 

Find best matches 
from a library of MC 
events 
 
Judge how signal-like 
an event is based on 
those best matches. 

Matching is done 
using only strip info 
(location and 
charge) 
 
No dependence on 
high level 
reconstructed 
quantities 

New selection variable! 
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Matching 
Each input event is compared to the 
library events by calculating the 
likelihood that the photoelectrons in 
each event came from the same 
energy deposition. 

The library consists of: 
●  20 million signal events 
●  30 million background (NC) events 

Original Event 

Good Match 

Bad Match 
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LEM Particle ID 

3 variables + 
reconstructed energy 
used as inputs to a 
neural net 
 
Output of neural net 
is the LEM selection 
variable 
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Near Detector Data 
Apply the ne selection 
criteria to the ND data: 

●  Red shaded area is the 
systematic uncertainty on 
the MC simulation – 
dominated by uncertainties 
in modeling hadron 
production in n interactions                          
●  Having a near detector is 
essential – no need to rely 
solely on MC to predict the 
background in the far 
detector! 
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Oscillations affect each background component differently! 

Need to know how much of each component in the ND data: 
●  neutral current 
●  charged current νµ, 
●  charged current νe (from beam contamination) 

Near Detector Background 

Extract it from the data – don't 
rely on the simulation 
 
Due to the flexibility of our 
beam, we can use near 
detector data taken with 
different beam configurations 
to do this... 
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Diff. Beam Configurations 

Standard MC 
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Data-Driven BG 

(59%) 
(29%) 

(12%) 
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Event Count 

In signal-enhanced region 
(LEM>0.7): 
 
Expected background (θ13=0): 
49.5 ± 2.8 (syst) ± 7.0 (stat) 
 
Observed data: 
62 
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Fitting to Oscillations 

15 bin fit 
3 LEM bins x 5 energy bins 
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Best Fit 

Best fit sin22θ13 = 0.040 
(Assuming δ=0, θ23=π/4, 
normal hierarchy) 
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Allowed Regions 

Feldman-Cousins contours 
 
Uncertainties in the other 
oscillation parameters are included 

Assuming: 
δ=0, θ23 = π/4 
normal (inverted) hierarchy 

We exclude sin22θ13=0 at 89% CL 

sin2 (2!13)< 0.12(0.19)    90% CL
sin2 (2!13) = 0.04(0.08)    Best Fit
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Comparison to T2K 
How does MINOS signal prediction compare with T2K's best fit?  

(sin22θ13=0.11) 
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Comparison  

Overlay of MINOS and T2K allowed region 
(NOT a combined fit) 

* arX
iv:1106.2822 

* 
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Global Fit (Fogli et al.) 

•  Combine World neutrino 
oscillation data 
–  Solar experiments 
–  Reactors (short & long BL) 
–  LBL 
–  Atmospheric neutrinos 
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Summary 

•  Exciting time for Neutrino physicists 
•  Precision measurements from 

–  Solar neutrino experiments 
–  Atmospheric neutrinos 
–  Accelerator based long baseline experiments 

•  Results from LBL experiments 
–  Neutrinos and Anti-neutrinos oscillate the same 
–  Indications that θ13>0 from MINOS and T2K 
–  Improved by global fit 

•  Future 
–  Much more data from T2K 
–  Reactor experiments 
–  Start planning for CP violation in neutrino section 
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