Parton Distribution Functions

James Stirling Cambridge University

SINGLE PARTON DISTRIBUTIONS

- introduction and overview
- LHC benchmark cross sections
- issues and outlook

DOUBLE PARTON DISTRIBUTIONS

introduction and overview

in collaboration with Alan Martin, Robert Thorne, Graeme Watt, Jo Gaunt, Steve Kom and Anna Kulesza

introduction and overview

(single) parton distribution functions

$$f_{i/A}(x,Q^2)$$

- introduced by Feynman (1969) in the parton model, to explain Bjorken scaling in deep inelastic scattering data; interpretation as probability distributions
- according to the QCD *factorisation theorem* for inclusive hard scattering processes, universal distributions containing long-distance structure of hadrons; related to parton model distributions at leading order, but with logarithmic scaling violations (DGLAP)
- key ingredients for Tevatron and LHC phenomenology

for example, in Deep Inelastic Scattering

$$\frac{1}{x}F_{2}^{lp}(x,Q^{2}) = x\sum_{q}e_{q}^{2}\int_{x}^{1}\frac{dy}{y}q(y,Q^{2})\left\{\delta(1-\frac{x}{y}) + \frac{\alpha_{s}(Q^{2})}{2\pi}C_{q}(x/y)\right\}$$
$$+ x\sum_{q}e_{q}^{2}\frac{\alpha_{s}(Q^{2})}{2\pi}\int_{x}^{1}\frac{dy}{y}g(y,Q^{2})C_{g}(x/y) + \mathcal{O}(\alpha_{S}^{2})$$
$$+ \mathcal{O}(1/Q^{2}) \quad \text{(higher twist, mass corrections)}$$

where the scale dependence of the parton distributions is calculable in QCD perturbation theory

$$\mu^2 \frac{\partial}{\partial \mu^2} f_i(x,\mu^2) = \frac{\alpha_S(\mu^2)}{2\pi} \sum_j \int_x^1 \frac{dy}{y} f_j(y,\mu^2) P_{ij}(x/y,\alpha_S(\mu^2))$$

... and $f_i(x, \mu_0^2)$ determined from

- lattice QCD (in principle)
- fits to data (in practice)

Dokshitzer Gribov Lipatov Altarelli Parisi

C

y, μ²

 $f_{i/p}$

how pdfs are obtained*

- choose a factorisation scheme (e.g. MS), an order in perturbation theory (LO, NLO, NNLO) and a 'starting scale' Q₀ where pQCD applies (e.g. 1-2 GeV)
- parametrise the quark and gluon distributions at Q_{0} , e.g.

$$f_i(x, Q_0^2) = A_i x^{a_i} [1 + b_i \sqrt{x} + c_i x] (1 - x)^{d_i}$$

- solve DGLAP equations to obtain the pdfs at any x and scale Q > Q₀; fit data for parameters {A_i, a_i, ...α_S}
- approximate the exact solutions (e.g. interpolation grids, expansions in polynomials etc) for ease of use; thus the output 'global fits' are available 'off the shelf", e.g.

SUBROUTINE PDF(X,Q,U,UBAR,D,DBAR,...,BBAR,GLU) input | output

MSTW 2008 NLO PDFs (68% C.L.)

the pdf industry

- many groups now extracting pdfs from 'global' data analyses (MSTW, CTEQ, NNPDF, ...)
- broad agreement, but differences due to
 - choice of data sets (including cuts and corrections)
 - treatment of data errors
 - treatment of heavy quarks (s,c,b)
 - order of perturbation theory
 - parameterisation at Q_0
 - theoretical assumptions (if any) about:
 - flavour symmetries
 - $x \rightarrow 0, 1$ behaviour

HERA-DIS FT-DIS Drell-Yan Tevatron jets Tevatron W,Z other

examples of data sets used in fits*

Data set	$N_{ m pts.}$		Data set	N _{pts}
H1 MB 99 e ⁺ p NC	8		$\frac{BCDMS}{\mu p} E_2$	163
H1 MB 97 e ⁺ p NC	64		BCDMS $\mu p T_2$	151
H1 low Q^2 96–97 e^+p NC	80		NMC $\mu p E_2$	123
H1 high Q^2 98–99 e^-p NC	126		NMC $\mu d F_2$	123
H1 high Q^2 99–00 e^+p NC	147		NMC $\mu n/\mu n$	1/8
ZEUS SVX 95 e ⁺ p NC	30		$F_{665} \mu p F_{2}$	53
ZEUS 96–97 e^+p NC	144		$E_{665} \mu p F_{2}$	53
ZEUS 98–99 e ⁻ p NC	92			37
ZEUS 99–00 e ⁺ p NC	90		SLAC ed E	38
H1 99–00 e ⁺ p CC	28		NMC/RCDMS/SLAC E_{i}	31
ZEUS 99–00 e ⁺ p CC	30		E866/NuSea pp DY	184
H1/ZEUS $e^{\pm}p$ $F_2^{ m charm}$	83		$E_{866}/NuSea pp DT$	15
H1 99–00 <i>e</i> + <i>p</i> incl. jets	24			53
ZEUS 96–97 e ⁺ p incl. jets	30		$CHORUS \nu N F_{0}$	42
ZEUS 98–00 $e^\pm p$ incl. jets	30		NuTeV $\mu N \times F_2$	42
DØ II pp̄ incl. jets	110		CHORUS $\nu N \times F_2$	33
CDF II <i>pp</i> ̄ incl. jets	76		$CCER \nu N \rightarrow \nu \nu X$	86
CDF II $W \rightarrow l \nu$ asym.	22		NuTeV $\nu N \rightarrow \mu \mu X$	84
DØ II $W \rightarrow l \nu$ asym.	10		$\mu\mu\lambda$	
DØ II Z rap.	28		All data sets	2743
CDF II Z rap.	29	-	red font = new wrt MF	2.ST2006 f

*MSTW2008

recent global or quasi-global pdf fits

pdfs	authors	arXiv	
АВКМ	S. Alekhin, J. Blümlein, S. Klein, S. Moch, and others	0908.3128, 0908.2766,	
CTEQ	HL. Lai, M. Guzzi, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, CP. Yuan, and others	1007.2241, 1004.4624, 0910.4183, 0904.2424, 0802.0007,	
GJR	M. Glück, P. Jimenez-Delgado, E. Reya, and others	0909.1711, 0810.4274,	
HERAPDF	H1 and ZEUS collaborations	1006.4471, 0906.1108,	
MSTW	A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt	1006.2753, 0905.3531, 0901.0002,	
NNPDF	R. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. Latorre, J. Rojo, M. Ubiali, and others	1005.0397, 1002.4407, 0912.2276, 0906.1958,	

	MSTW08	CTEQ6.6 ^x	NNPDF2.0	HERAPDF1.0	ABKM09	GJR08
HERA DIS	\checkmark	\checkmark	√*	✓*	\checkmark	✓
F-T DIS	\checkmark	\checkmark	✓	×	\checkmark	✓
F-T DY	\checkmark	\checkmark	✓	×	\checkmark	\checkmark
TEV W,Z	\checkmark	√+	✓	×	×	×
TEV jets	\checkmark	√+	✓	×	×	\checkmark
GM-VFNS	\checkmark	\checkmark	×	✓	×	×
NNLO	\checkmark	×	×	×	\checkmark	\checkmark

+ Run 1 only

* includes new combined H1-ZEUS data $\rightarrow 1 - 2.5\%$ increase in quarks at low x (depending on procedure), similar effect on $\alpha_{\rm S}(M_Z^2)$ if free and somewhat less on gluon; more stable at NNLO (MSTW prelim.)

^X New (July 2010) CT10 includes new combined H1-ZEUS data + Run 2 jet data + extended gluon parametrisation + ... \rightarrow more like MSTW08 ¹⁰

impact of Tevatron jet data on fits

- a distinguishing feature of pdf sets is whether they use (MRST/MSTW, CTEQ, NNPDF, GJR,...) or do not use (HERAPDF, ABKM, ...) Tevatron jet data in the fit: the impact is on the *high-x gluon* (Note: Run II data requires slightly softer gluon than Run I data)
- the (still) missing ingredient is the full NNLO pQCD correction to the cross section, but not expected to have much impact in practice [Kidonakis, Owens (2001)]

dijet mass distribution from D0

D0 collaboration: arXiv:1002.4594

pdf uncertainties

- all groups produce 'pdfs with errors'
- typically, 20-40 'error' sets based on a 'best fit' set to reflect $\pm 1\sigma$ variation of all the parameters* $\{A_{i}, a_{i}, ..., \alpha_{S}\}$ inherent in the fit
- these reflect the uncertainties on the data used in the global fit (e.g. $\delta F_2 \approx \pm 3\% \rightarrow \delta u \approx \pm 3\%$)
- however, there are also systematic pdf uncertainties reflecting theoretical assumptions/prejudices in the way the global fit is set up and performed (see earlier slide)

* e.g.
$$f_i(x, Q_0^2) = A_i x^{a_i} [1 + b_i \sqrt{x} + c_i x] (1 - x)^{d_i}$$

pdf uncertainties (contd.)

- NNPDF create many replicas of data and obtain PDF replicas in each case by fitting to training set and comparing to validation set \rightarrow uncertainty determined by spread of replicas. Direct relationship to χ^2 in global fit not trivial.
- NNPDF and MSTW (due to extra parameters) have more complicated shape for gluon at smaller x and bigger small-x uncertainty, ditto for CTEQ at large x
- different theory assumptions in strange quark pdf leads to vastly different uncertainties — e.g. MSTW small, NNPDF large; feeds into other 'light' quarks
- perhaps surprisingly, all get rather similar uncertainties for pdfs and predicted cross sections — see later

example: MSTW2008(NLO) vs. CTEQ6.6

Note:

CTEQ error bands comparable with MSTW 90%cl set (different definition of tolerance)

CTEQ light quarks and gluons slightly larger at small x because of imposition of positivity on gluon at Q_0^2

CTEQ gluons slightly larger at large x - only Run 1 jet data in fit

→ implications for 'precision' LHC cross sections (later)

pdfs and $\alpha_{\rm S}({\rm M_Z}^2)$

- MSTW08, ABKM09 and GJR08:
 α_S(M_Z²) values and uncertainty determined by global fit
- NNLO value about 0.003 0.004 lower than NLO value, e.g. for MSTW08

 $\alpha_S^{\overline{MS},NLO}(M_Z^2) = 0.1202 {+0.012 \atop -0.015}$

 $\alpha_S^{\overline{MS},NNLO}(M_Z^2) = 0.1171 {+0.014 \atop -0.014}$

- CTEQ, NNPDF, HERAPDF choose standard values and uncertainties
- world average (PDG 2009)

$$\alpha_S^{\overline{MS}}(M_Z^2) = 0.1184 \pm 0.0007$$

- note that the pdfs and α_{s} are correlated!
- e.g. gluon α_{s} anticorrelation at small x and quark α_{s} anticorrelation at large x

cf. pdfs in 1993

	µ-DIS	v-DIS	Prompt γ	D-Yan	W, Z
MRS '88	EMC +	CDHSW	$AFS(+J/\psi)$	-	-
DFLM '88	(EMC +)	CHARM +	-	E288 +	-
ABFOW '89	BCDMS	-	WA70	-	-
HMRS '90	EMC BCDMS NMC(n/p)	CDHSW	WA70	E605	
MT '90	EMC BCDMS	CDHSW	-	E288 E605	-
KMRS '90 (sets B ₀ ,B_)	BCDMS NMC(n/p)	CDHSW	WA70	E605	-
MRS (Apr '92) (sets D ₀ ,D_)	$BCDMS \\ NMC(p, n)^{\dagger}$	CDHSW CCFR [†]	WA70	E605	(UA2, CDF
MRS (Nov '92) (sets D'_0,D'_)	$\frac{\text{BCDMS}}{\text{NMC}(p,n)}$	CCFR	WA70	E605	(UA2, CDF)
CTEQ ('93)	$\frac{\text{BCDMS}}{\text{NMC}(p,n)}$	CCFR	WA70 E706,UA6	E605	

LHC benchmark cross sections

precision phenomenology at LHC

- LO for generic PS Monte Carlos
- NLO for NLO-MCs and many parton-level signal and background processes
- NNLO for a limited number of 'precision observables' (W, Z, DY, H, ...)
- + E/W corrections, resummed HO terms etc...

$$\delta \sigma_{\text{th}} = \delta \sigma_{\text{pdf}} \oplus \delta \sigma_{\text{HO}} \oplus \delta \sigma_{\text{param}} \oplus \dots$$

parton luminosity functions

• a quick and easy way to assess the mass, collider energy and pdf dependence of production cross sections

$$\widehat{\sigma}_{ab\to X} = C_X \delta(\widehat{s} - M_X^2)$$

$$\sigma_X = \int_0^1 dx_a dx_b f_a(x_a, M_X^2) f_b(x_b, M_X^2) C_X \delta(x_a x_b - \tau)$$

$$\equiv C_X \left[\frac{1}{s} \frac{\partial \mathcal{L}_{ab}}{\partial \tau} \right] \qquad (\tau = M_X^2/s)$$

$$\frac{\partial \mathcal{L}_{ab}}{\partial \tau} = \int_0^1 dx_a dx_b f_a(x_a, M_X^2) f_b(x_b, M_X^2) \delta(x_a x_b - \tau)$$

• i.e. all the mass and energy dependence is contained in the X-independent parton luminosity function in []

- useful combinations are $ab = gg, \sum_q q\overline{q}, \dots$
- and also useful for assessing the uncertainty on cross sections due to uncertainties in the pdfs

more such luminosity plots available at www.hep.phy.cam.ac.uk/~wjs/plots/plots.html

pdfs at LHC – the issues

• high precision cross section predictions require accurate knowledge of pdfs: $\delta\sigma_{th} = \delta\sigma_{pdf} + \dots$

 \rightarrow how do the different pdf sets compare?

- can we learn more about pdfs from LHC measurements, e.g.
 - high- E_T jets \rightarrow gluon?
 - W⁺, W⁻, Z⁰ \rightarrow quarks?
 - very forward Drell-Yan (e.g. LHCb) \rightarrow small x?

parton luminosity comparisons

Luminosity and cross section plots from Graeme Watt (MSTW, in preparation), available at projects.hepforge.org/mstwpdf/pdf4lhc

fractional uncertainty comparisons

remarkably similar considering the different definitions of pdf uncertainties used by the 3 groups!

NLO and NNLO parton luminosity comparisons

benchmark W,Z cross sections

predictions for σ(W,Z) @ Tevatron, LHC: NLO vs. NNLO

flavour decomposition of W cross sections

at LHC, ~30% of W and Z total cross sections involves s,c,b quarks

impact of sea quarks on the NLO W charge asymmetry ratio at 7 TeV:

pdfs	R(W⁺/W⁻)
{udg} only	1.53
{udscbg} = MSTW08	$\textbf{1.42}\pm\textbf{0.02}$
{udscbg} _{sea} only	0.99
{udscbg} _{sym.sea} only	1.00

Inclusive W boson measurements: Summary

 $W \rightarrow \alpha$ cross section

Higgs

- only scale variation uncertainty shown
- central values calculated for a *fixed* set pdfs with a *fixed* value of $\alpha_{s}(M_{z})$

benchmark Higgs cross sections

... differences from both pdfs AND α_s !

0.9

0.85

0.8

120

How to define an overall 'best theory prediction'?! See LHC **Higgs Cross Section** Working Group meeting, 5-6 July, higgs2010.to.infn.it

260

280

M_u (GeV)

300

NLO gg \rightarrow H at the LHC (\sqrt{s} = 7 TeV)

small print

Central predictions use the values of $\alpha_{s}(M_{7})$ favoured by each PDF group, i.e. 0.1202 for MSTW08, 0.1180 for CTEQ6.6 and 0.1190 for NNPDF2.0. For MSTW08, $\alpha_{s}(M_{z})$ was determined simultaneously with the PDFs in the global fit. The experimental uncertainties on $\alpha_{s}(M_{z})$ are +0.0012/-0.0015 at 68% C.L The uncertainties on $\alpha_{\rm S}({\rm M}_{\rm Z})$ for CTEQ6.6 and NNPDF2.0 are taken to be ±0.0012 at 68% C.L. The combined PDF+ α_{e} uncertainty is calculated following the prescription recommended by each group, i.e. α_{s} uncertainties are simply added in quadrature for CTEQ6.6, while for NNPDF2.0 the exact prescription is used as explained in arXiv:1004.0962

180

200

220

240

160

single pdfs – issues and outlook

(single) pdfs – issues and outlook

- continuing convergence between the various pdf sets
- outstanding issues include:
 - inclusion of combined HERA data (not yet in all fits)
 - difficulty of reconciling Run II Tevatron W asymmetry data
 - proper assessment of uncertainties due to treatment of heavy quark flavours (GM-VFNS optimal but not uniquely defined)
 - beyond NNLO? e.g. influence of $[\alpha_{s} \ln(1/x)]^{n}$ contributions
 - 'QED pdfs' (MSTW in preparation, cf. MRST 2004)
- much discussion (e.g. PDF4LHC workshops) among the pdf groups about how to define a 'overall best' theory prediction and uncertainty (be careful with `averaging' and `envelopes'!)
- eagerly awaiting *precision* cross sections at 7 TeV!

Lepton asymmetry and CDF data

Lepton asymmetry and new DØ data

double parton distributions

For a `state of the art' overview of Multiple Parton Interactions, see the talks at the ongoing workshop: indico.desy.de/conferenceDisplay.py?confld=3241

single and double hard parton scattering

(Theoretical underpinning: see e.g. the talks by Treleani and Diehl at the Workshop) ⁴⁶

double parton scattering: rates and topologies

• if we assume that the dPDFs factorise, i.e.

 $f_{ab/A}(x_1, x_2; Q_1^2, Q_2^2) = f_a(x_1, Q_1^2) f_b(x_2, Q_2^2)$

then we obtain

$$\sigma^{\text{DPS}}(X,Y) = \frac{m}{2} \frac{\sigma_X \sigma_Y}{\sigma_{\text{eff}}}$$
X,Y distinct: m=2
X,Y same: m=1

- studies of γ+3j production by CDF and D0 suggest
 σ_{eff} ≈ 15 mb
- but there is generally a SPS 'background', a+b →
 XY

- use `pairwise transverse momentum balance' (shape variable) as a signal for double parton scattering
- many final states have been studied*: X,Y = γj, 2j, W, bb, tt, H, ...
- interesting example: same-sign W at LHC

*Del Fabbro, Treleani, Cattaruzza; Berger, Jackson, Shaughnessy; Maina; Hussein; Gaunt, Kom, Kulesza, S; ...

Kulesza, S (1999) Maina (2009) Gaunt, Kom, Kulesza, S (2010)

> Note: a + b \rightarrow W⁺W⁻

but a + b ∳ W⁺W⁺

instead q + q \rightarrow W⁺W⁺ + q'q'

so same-sign W production could be a good place to look for DPS (with a lot of luminosity!)

dDGLAP

• the dPDFs satisfy a `double DGLAP' equation

$$\begin{aligned} \frac{dD_h^{j_1j_2}(x_1, x_2; t)}{dt} &= \frac{\alpha_s(t)}{2\pi} \Biggl[\sum_{j_1'} \int_{x_1}^{1-x_2} \frac{dx_1'}{x_1'} D_h^{j_1'j_2}(x_1', x_2; t) P_{j_1' \to j_1}\left(\frac{x_1}{x_1'}\right) \\ &+ \sum_{j_2'} \int_{x_2}^{1-x_1} \frac{dx_2'}{x_2'} D_h^{j_1j_2'}(x_1, x_2'; t) P_{j_2' \to j_2}\left(\frac{x_2}{x_2'}\right) \\ &+ \sum_{j_j'} D_h^{j_j'}(x_1 + x_2; t) \frac{1}{x_1 + x_2} P_{j' \to j_1j_2}\left(\frac{x_1}{x_1 + x_2}\right) \Biggr] \end{aligned}$$

Kirschner 1979 Shelest, Snigirev, Zinovjev 1982 Snigirev 2003 Korotkikh, Snigirev 2004 Cattaruzza et al. 2005

• and note that $f_{ab}(x_1, x_2; Q_1^2, Q_2^2) = f_a(x_1, Q_1^2) f_b(x_2, Q_2^2)$ is **not** a solution, i.e. factorisation is broken (in fact this must be true since must have $x_1 + x_2 < 1$ for momentum conservation) _{Snigirev 2003}

Snigirev 2003 Korotkikh, Snigirev 2004 Cattaruzza et al. 2005

the dPDFs and sPDFS are related by sum rules, e.g.

$$\sum_{a} \int_{0}^{1-x_{2}} dx_{1} x_{1} f_{ab}(x_{1}, x_{2}; Q^{2}) = (1-x_{2}) f_{b}(x_{2}, Q^{2})$$

a consistent LO package (GS09) is available

Gaunt, S 2009

MPI/dPDFs – issues and outlook

- soft multiple parton scattering: an essential part of MCs needed to explain MB and UE
- hard double parton scattering has been observed, e.g. in γ +3j production need topological cuts to enhance DPS contribution: $\sigma_{eff} \sim 15$ mb is suggested
- lots of potential signals at LHC (4 jets, WW, ...)
- double pdfs are of theoretical interest (dDGLAP, sum rules, correlations, factorisation breaking etc.) but testing these will be experimentally very challenging

extra slides

determination of best fit and uncertainties

- MSTW08 20 eigenvectors. Due to slight incompatibility of different sets (and perhaps to some extent parametrisation inflexibility) use 'dynamical tolerance' with inflated $\Delta \chi^2$ of 5 20 for eigenvectors
- CTEQ6.6 22 eigenvectors. Inflated $\Delta \chi^2 = 50$ for 1 sigma for eigenvectors (no normalization uncertainties in CTEQ6.6, *cf.* CT10)
- HERAPDF2.0 9 eigenvectors, use $\Delta \chi^2 = 20$. Additional model and parametrisation uncertainties
- ABKM09 21 parton parameters, use $\Delta \chi^2 = 1$
- GJR08 12 parton parameters. Use Δχ²=20. Impose strong theory ('dynamical parton') constraint on input form of pdfs.

Note: NNPDF2.0 create many replicas of data and obtain PDF replicas in each case by fitting to training set and comparing to validation set \rightarrow uncertainty determined by spread of replicas. Direct relationship to χ^2 in global fit not trivial.

benchmark top cross sections

α_{S} - pdf correlations

pdf + α_s uncertainties in jet cross sections

CTEQ6.6 vs. CT10, CT10W (NLO)

* CT10W: attempt to include recent D0 lepton asymmetry data in global fit \rightarrow slightly different d/u

... the same at 90%cl

... the same at 90%cl

heavy quarks: charm, bottom, ...

considered sufficiently massive to allow pQCD treatment: $g \rightarrow Q\overline{Q}$

distinguish two regimes:

(i) $Q^2 \sim m_H^2$ include full m_H dependence to get correct threshold behaviour (ii) $Q^2 \gg m_H^2$ treat as ~massless partons to resum $\alpha_s^n \log^n(Q^2/m_H^2)$ via DGLAP

FFNS: OK for (i) only ZM-VFNS: OK for (ii) only

consistent **GM**(=general mass)-**VFNS** now available (e.g. $ACOT(\chi)$, RT, BMSN,...) which interpolates smoothly between the two regimes Aivazis, Collins, Olness, Tung; Roberts, Thorne; Buza, Matiounine, Smith, Migneron, van Neerven, ...

Note:

- (i) the definition of these is tricky and non-unique (ambiguity in assignment of $O(m_H^2/Q^2)$ contributions), and the implementation of improved treatment (e.g. in going from MRST2004 \rightarrow MRST 2006 or CTEQ 6.1 \rightarrow 6.5) can have a big effect on light partons
- (ii) the *true* uncertainty on e.g. LHC predictions coming from ambiguities in the heavy quark treatment has yet to be quantified

charm and bottom structure functions

- MSTW 2008 uses *fixed* values of $m_c = 1.4 \text{ GeV}$ and $m_b = 4.75 \text{ GeV}$ in a GM-VFNS
- currently studying the sensitivity of the fit to these values, and impact on LHC cross sections

extrapolation uncertainties

Examples:

- (i) the MSTW negative small-x gluon at Q_0
- (ii) the NNPDF 'parameter free' pdfs at small and large x

summary of DIS data

Note: must impose cuts on DIS data to ensure validity of leading-twist DGLAP formalism in analyses to determine pdfs, typically:

 $Q^2 > 2 - 4 \text{ GeV}^2$

 $W^2 = (1-x)/x Q^2 > 10 - 15 GeV^2$

H1 95-97 incl. jet and dijet data, χ^2 = 13/32 pts. MSTW NLO PDF fit (preliminary, 17/10/2007)

only in NLO fit (no NNLO correction yet)

improved LO pdfs

- conventional wisdom is to match pQCD order of pdfs with that of MEs
- but, in practice,
 - $\sigma_{LO} = PDFs(LO) \otimes ME(LO)$ can be different from $\sigma_{NLO} = PDFs(NLO) \otimes ME(NLO)$, in both shape and normalisation
 - LO pdfs have very poor χ^2 in (LO) global fit (no surprise: NLO corrections at large and small x are significant and preferred by the data)
- momentum conservation limits how much additional glue can be added to LO partons to compensate for missing NLO pQCD corrections (e.g. to get correct evolution rate of small-x quarks)
- therefore relax momentum conservation and redo LO fit; study the impact of this on χ^2 , partons and cross sections
- e.g. Thorne & Shertsnev 2007: LO* partons — χ^2 : 3066/2235 \rightarrow 2691/2235, momentum conservation: 100% \rightarrow 113%

τ transverse momentum distribution in H $\rightarrow \tau \ \tau$ production at LHC

comparison of gluons at high Q²

pdf uncertainty on $\sigma(gg \rightarrow H)$

comparison of gluons extracted from LO, NLO, NNLO global fits

 large positive P_{qg} contributions at small x lead to smaller gluons at higher order

• clear instability at small x,Q^2 , and this is reflected in predictions for F_L (see later)

sea quarks

•the sea presumably arises when 'primordial' valence quarks emit gluons which in turn split into quark-antiquark pairs, with suppressed splitting into heavier quark pairs

•so we naively expect

 $u \approx d > s > c > \dots$

• but why such a big d-u asymmetry? Meson cloud, Pauli exclusion, ...? The ratio of Drell-Yan cross sections for $pp,pn \rightarrow \mu^+\mu^- + X$ provides a measure of the difference between the *u* and *d* sea quark distributions

strange

earliest pdf fits had SU(3) symmetry: $s(x,Q_0^2) = \overline{s}(x,Q_0^2) = \overline{u}(x,Q_0^2) = \overline{d}(x,Q_0^2)$

later relaxed to include (constant) strange suppression (cf. fragmentation):

$$s(x,Q_0^2) = \bar{s}(x,Q_0^2) = \frac{\kappa}{2} \left[\bar{u}(x,Q_0^2) + \bar{d}(x,Q_0^2) \right]$$

with κ = 0.4 - 0.5

nowadays, dimuon production in vN DIS (CCFR, NuTeV) allows 'direct' determination:

$$\frac{d\sigma}{dxdy}\left(\nu_{\mu}(\bar{\nu}_{\mu})N \to \mu^{+}\mu^{-}X\right) = B_{c} \mathcal{NA} \frac{d\sigma}{dxdy}\left(\nu_{\mu}s(\bar{\nu}_{\mu}\bar{s}) \to c\mu^{-}(\bar{c}\mu^{+})X\right)$$

in the range 0.01 < x < 0.4 data seem to slightly prefer $s(x, Q_0^2) - \bar{s}(x, Q_0^2) \neq 0$ we determine theoretical explanation?!

MSTW

MSTW

strange quark in NNPDF

Note:

MSTW: assume u,d,s quarks have same x^{δ} behaviour as $x \rightarrow 0$

NuTeV $sin^2\theta_w$ anomaly largely removed

arXiv:0905.3531 [hep-ph]

NLO	$\alpha_S(M_Z^2)$ (expt. unc. only)
MSTW (this work)	$0.1202 {}^{+0.0012}_{-0.0015}$
CTEQ [2]	0.1170 ± 0.0047
H1 [23]	0.1150 ± 0.0017
ZEUS [48]	0.1183 ± 0.0028
Alekhin [57]	0.1171 ± 0.0015
BBG [58]	0.1148 ± 0.0019
GJR [59]	0.1145 ± 0.0018

NNLO	$\alpha_S(M_Z^2)$ (expt. unc. only)
MSTW (this work)	$0.1171 \begin{array}{c} +0.0014 \\ -0.0014 \end{array}$
AMP [60]	0.1128 ± 0.0015
BBG $[58]$	$0.1134 \begin{array}{c} +0.0019 \\ -0.0021 \end{array}$
ABKM [61]	0.1129 ± 0.0014
JR [62]	0.1158 ± 0.0035

 reasonable consistency between different analyses

• MSTW values slightly higher because of smaller low-x gluon needed for high- p_T Tevatron jet fit

MSTW (2009): full global NLO and NNLO fit

CTEQ (2008): full global NLO fit

H1 (2001): H1 + BCDMS

ZEUS (2005): ZEUS inc. DIS-JET + photoprodn.

BBG = Blumlein, Bottcher, Guffanti (2006): non-singlet DIS analysis

AMP = Alekhin, Melnikov, Petriello (2006): DIS + DY

GJR = Gluck, Jimenez-Delgado, Reya (2008): DIS + DY + Tevatron jet

JR = Jimenez-Delgado, Reya (2009): DIS + DY

ABKM = Alekhin, Blumlein, Klein, Moch (2009): DIS + DY

PDG(2008): $\alpha_S(M_Z^2) = 0.1176 \pm 0.002$

CT09G fit to Run I and Run II jet data simultaneously, find much harder gluon (with more flexible parameterisation)

... harder than valence quarks?!

an independent measurement of the small-x gluon

 ∂F_2 $\simeq \alpha_S P^{qg} \otimes g + \dots$ $\simeq \alpha_S C_{Lg} \otimes g + \dots$ $\partial \ln Q^2$ F_L

- a test of the assumptions in the DGLAP LT pQCD analysis of small-x F₂
- higher—order In(1/x) and highertwist contributions could be important

Unique features

- pseudo-rapidity range 1.9 4.9
 1.9 2.5 complementary to ATLAS/CMS
 > 2.5 unique to LHCb
- beam defocused at LHCb: 1 year of running = 2 fb⁻¹
- trigger on low momentum muons: p > 8 GeV, $p_T > 1 \text{ GeV}$

access to unique range of (x,Q²)

LHCb

\rightarrow detect forward, low p_T muons from $q\bar{q} \rightarrow \mu^+\mu^-$

