# Top quarks at the new energy frontier

María Aldaya (DESY)

**DESY Seminar**, 23 – 24 May 2017





# The Standard Model (SM) of particle physics

#### One of the greatest achievements of 20th Century Fundamental Science



- Successful description of matter structure
  - 12 matter and 12 antimatter particles (fermions)
  - 3 fundamental interactions (carriers: bosons)



Last missing piece: the Higgs boson



M. Aldaya

# The Standard Model (SM) of particle physics

#### One of the greatest achievements of 20th Century Fundamental Science

- 2012: LHC experiments discovered a new Higgs-like boson
  - Huge deal: candidate to close the long-standing puzzle of how elementary particles acquire mass in the SM
  - Since then, focus set to measure its properties as precisely as possible

#### But does it behave like the SM Higgs?



Announcement in a seminar at CERN on July 4<sup>th</sup>, 2012



### What is the origin of particle mass?



Volume of sphere proportional to particle mass

#### Top quarks at the LHC are crucial to pin down the SM nature of the Higgs

# The (in)complete Standard Model picture

#### There are several open questions that the SM cannot answer

Neutrino masses, why only three families of elementary particles, the matter/antimatter imbalance in the Universe, the nature of dark-matter and dark energy, gravitation is missing, [...]

 Extensive search for possible SM extensions, but no signs of New Physics yet





... we just know the tip of the iceberg

#### Top quarks at the LHC are an excellent tool for stringent tests of the SM and direct search for BSM physics

# The top quark is special

Heaviest elementary particle known to date

- Short lived
  - Decays before hadronizing
  - Does not form bound states
  - Spin transferred to decay products
- Couples strongly to Higgs

• yt ~ 1

#### Several open questions:

- Is the top mass generated by the Higgs mechanism?
- Role in EW symmetry breaking?
- Role in beyond BSM physics?

![](_page_5_Figure_12.jpeg)

gm

g J

H-

Mass of SM particles [GeV]

# **Constraining the Standard Model**

• The top quark mass is a fundamental parameter of the SM

![](_page_6_Figure_2.jpeg)

- Other properties of the top quark (electroweak couplings, production asymmetries, etc) are predicted by the SM
  - $\rightarrow$  Precision measurements could reveal the SM breaking down

#### Every top quark precision measurement is a search

### **Direct probe for New Physics**

Top is a main ingredient of many BSM scenarios

![](_page_7_Figure_2.jpeg)

**W'→tb** JHEP 05 (2014) 108

### How are top quarks produced?

- Strong top pair (tt̄) production: sensitive to  $\alpha_s$ , top mass, PDFs

![](_page_8_Figure_2.jpeg)

|    | LHC(13) | LHC(7)              | Tev(1.9) |
|----|---------|---------------------|----------|
| gg | ~90%    | ~ <mark>8</mark> 5% | ~10%     |
| qq | ~10%    | ~15%                | ~90%     |

![](_page_8_Figure_4.jpeg)

NNLO+NNLL predictions available since 2013:

$$\sigma(7 \text{ TeV}) = 177 \text{ pb} \pm 7\%$$
  
 $\sigma(8 \text{ TeV}) = 253 \text{ pb} \pm 6\%$   
 $\sigma(13 \text{ TeV}) = 832 \text{ pb} \pm 5\%$   
 $R_{13/8} = 3.28$ 

[PRL 110 (2013) 252004 ]

### ... and how do they decay?

![](_page_9_Figure_1.jpeg)

### Single top quark

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_0.jpeg)

### **Trip down memory lane**

![](_page_12_Figure_1.jpeg)

#### 1000s events

![](_page_12_Figure_3.jpeg)

#### 100000s events

![](_page_12_Figure_5.jpeg)

| <ul> <li>Scrutinize and measure</li> <li>Establish top as SM quark</li> </ul> | of single top<br>production     | More than 5M tt pairs $\rightarrow$ 20x more than Tev                                                                           | atron in its lifespan! |
|-------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Tevatron pp 1.96 TeV<br>- "Birthplace" of the top<br>- Scrutinize and measure | First observation of single top | <ul> <li>- pp: complementary initial state</li> <li>- Larger statistics: top factory:</li> <li>More than 5M tt pairs</li> </ul> |                        |

![](_page_13_Figure_0.jpeg)

### The present...

CMS Integrated Luminosity, pp, Run 2  $\sqrt{s}=$  13 TeV

![](_page_14_Figure_2.jpeg)

CMS Integrated Luminosity, pp, Run 2  $\sqrt{s}=$  13 TeV

![](_page_15_Figure_2.jpeg)

CMS Integrated Luminosity, pp, Run 2  $\sqrt{s}=$  13 TeV

![](_page_16_Figure_2.jpeg)

CMS Integrated Luminosity, pp, Run 2  $\sqrt{s}=$  13 TeV

![](_page_17_Figure_2.jpeg)

CMS Integrated Luminosity, pp, Run 2  $\sqrt{s}$  = 13 TeV

![](_page_18_Figure_2.jpeg)

# CMS Experiment at the LHC

ECAL

- Total Weight 14000 t
- Diameter 15 m
- Magnetic Field 3.8 T
- Silicon Pixel and Strip Trackers
- Crystal ECal, Brass HCal

Silicon pixe

striv tracker

Muon barre

- Muon Chambers, DT, RPC, CSC
- Trigger L1: 100kHz, ~500 Hz to tape

ATLAS

3.8 T Solenoid Muon endcaps

CERNIC

20

### LHC Run-I ('10-'12): 25 fb1

Peak inst. luminosity: 8 x 10<sup>33</sup> cm<sup>2</sup>s<sup>-1</sup> ~ 7000 top quark pairs per hour (8 TeV) > 5,000,000 top each CMS and ATLAS

LHC Run-II ('15-'18): 100 fb<sup>-1</sup> (13 TeV) Expect 80,000,000 tt and 80,000 ttZ

# Identifying top quarks in CMS

![](_page_20_Figure_1.jpeg)

M. Aldaya

13 TeV candidate: eμ + 2 b-tags

![](_page_21_Picture_1.jpeg)

# Rates and dynamics of top quark pair production

• First step in understanding top physics

• Test of QCD calculations and search for new physics

# **Run-I** inclusive tt cross section

All channels measured at 7 & 8 TeV to look for the unexpected

- Good agreement with NNLO+NNLL
- Highest precision: dilepton eµ channel ~4%, similar to theory prediction
  - High purity (~90%)
- LHCtopWG Run-I combinations underway

![](_page_22_Figure_6.jpeg)

# Run-II tt cross section: dilepton

Simple and robust approach

Selection: opposite-sign isolated  $e\mu$ ,  $\ge 2$  jets, 1 b-tag

• Focus on counting high-purity  $e\mu$  events

$$\sigma = rac{N_{data} - N_{bkg}}{\epsilon_{t\overline{t}}\int \mathbf{L} dt}$$

 $\sigma$ (tt) = 815 ± 9 (stat) ± 38 (syst) ± 19 (lumi) pb

 $\sigma^{\text{theory}}(\text{tt})$  = 832 <sup>+40</sup><sub>-46</sub> pb

(precision~ 5.3%)

Main uncertainties: luminosity (2.3%), lepton efficiencies (2.3%) jet energy scale (2.1%), signal modelling (2.1%)

Systematics can be further reduced with more data and more sophisticated analysis techniques  $\rightarrow$  learn from Run-I

![](_page_23_Figure_10.jpeg)

First measurement with only 43 pb<sup>-1</sup> of data: precision ~ 11%, statistically limited PRL 116 (2016) 052002

# Run-I Legacy tt cross sections

![](_page_24_Figure_1.jpeg)

# Run-II tt cross sections: challenges

Systematic uncertainties:

|              | Source           | Δσ/σ (%) |
|--------------|------------------|----------|
| Experimental | Trigger          | 1.2      |
|              | Lepton ID        | 1.5      |
|              | Jet Energy Scale | 0.8      |
|              | Drell-Yan Bg.    | 1.4      |
|              | b-tag            | 0.5      |
|              | Luminosity       | 2.6      |
|              | Total visible    | 3.6      |
| Theory       | Scale (extrap.)  | 0.2      |
|              | ME/PS (extrap.)  | 0.2      |
|              | Top pt (extrap.) | 0.5      |
|              | PDF (extrap.)    | 0.1      |

#### Possible improvements for Run-II:

- Experimental
  - Trigger  $\rightarrow$  maximize trigger efficiency
  - Lepton ID  $\rightarrow$  reduce syst with statistics
  - Backgrounds→ additional categories
  - Luminosity
  - Measure tt/Z ratio
- Theory
  - NLO+parton shower (PS) Monte Carlos
  - Improved MC tuning

7 TeV:  $\sigma_{t\bar{t}} = 173.6 \pm 2.1 \, (stat)^{+4.5}_{-4.0} \, (syst) \pm 3.8 \, (lumi) \, pb$ 8 TeV:  $\sigma_{t\bar{t}} = 244.9 \pm 1.4 \, (stat)^{+6.3}_{-5.5} \, (syst) \pm 6.4 \, (lumi) \, pb$  (precision ~ 3.7%)

JHEP 08 (2016) 029

### tt cross section measured at all energies

Dependence as a function of  $\sqrt{s}$  well understood

![](_page_26_Figure_2.jpeg)

# tt differential cross sections

Scrutinize tt production in all channels as a function of many kinematic observables

- $\rightarrow$  Precision tests of pQCD in different regions of phase space, window to BSM physics
- Use final-state products to reconstruct top quark candidates
- Compare to theory calculations and MC simulations
- Correct for detector, parton shower, acceptance effects (unfolding):

![](_page_27_Picture_6.jpeg)

Top quarks after radiation before decay

Allows comparison with fixed-order calculations

![](_page_27_Picture_9.jpeg)

from decay products after hadronization

Useful for MC tuning

![](_page_27_Picture_12.jpeg)

# Measured tt invariant mass

Rate and shape reproduced within uncertainties

![](_page_28_Figure_2.jpeg)

#### Elusive signs of new physics Test EW corrections $(Z, \gamma, H)$ [PRD 90 (2014) 014008] [JHEP 01 (2015) 092] ഞ്ഞഞ്ഞ Bump hunting 4500 Dilepton X→tť ന്നുണ്ണ W+jets Data 4000 [PRD 91 (2015) 01420] tt signal Z+jets 3500 E tt other tt+Z/W • Data e+µ N<sub>b-tag</sub> ≥ 1 Single t Diboson 3000 tī others Test QCD Uncertainty —Z' 2 TeV 2500 production m<sup>tt</sup> m(tt) modes near 2000 threshold 1500 [JHEP 034 (2010) 1009] 0 500 1000 1500 2000 2500 3000 3500 1000 M., [GeV] 500 Entering boosted 0' 1.4 regime Top pole mass 1.2 0.8 Running mass 0.6 $(m(\mu))$ PDF, as at high x 1600 600 1200 1400 400 800 1000

# Run-II: towards probing precisely tt invariant mass

Run-II will push ahead the differential meaurements program of Run-I

# tt differential cross sections

![](_page_30_Figure_1.jpeg)

In general: agreement with SM predictions for all measured distributions

![](_page_31_Figure_0.jpeg)

M. Aldaya

DESY Seminar, 23.05.17

![](_page_32_Figure_0.jpeg)

# The $p_{T}(top)$ distribution

**Run-I** 'discovery': top- $p_T$  spectrum is softer in data than in (most) MC simulations

Better described by beyond NLO QCD calculations (exact NNLO only available since 2015)

#### Fair agreement between ATLAS and CMS (working on guantifying consistency between experiments)

#### Also observed at 13 TeV

![](_page_32_Figure_6.jpeg)

### Zooming in: double differential tr cross sections

- First measurement of its kind at the LHC !
- Bin tt events in two variables of p<sub>T</sub>(top), y(top), m(tt), y(tt)
- 2D distributions provide stronger PDF constraints than 1D

![](_page_33_Figure_4.jpeg)

Run-II: improve precision, extend phase space, go 3D differential, constrain m<sub>top</sub>,  $\alpha$ s, PDF

arXiv:1703.01630

![](_page_34_Figure_0.jpeg)

- Very low production cross sections O(fb)
- Typically need multivariate analysis techniques to maximize sensitivity

![](_page_34_Figure_3.jpeg)

# tt+Z and tt+W

#### Very rare processes in SM

- Direct probe of top-Z coupling (new physics?), important backgrounds for BSM and tt+H
  - Selection based on leptons, further split in jets & b-tags to increase sensitivity
  - Simultaneous fit across several signal and control regions

0.6

0.4

0.8

![](_page_35_Figure_5.jpeg)

 $\overline{d}$ 

![](_page_35_Figure_6.jpeg)

ttW: Same-sign 2lepton

g

ttZ: 3lepton, 4lepton

![](_page_35_Figure_9.jpeg)

$$\sigma(pp \to t\bar{t}Z) = 1.00^{+0.09}_{-0.08}(\text{stat.}) \,{}^{+0.12}_{-0.10}(\text{sys.}) \,\text{ pb} \quad (9.9 \text{ std})$$
  
$$\sigma(pp \to t\bar{t}W) = 0.80 \,{}^{+0.12}_{-0.11}(\text{stat.}) \,{}^{+0.13}_{-0.12}(\text{sys.}) \,\text{ pb} \quad (5.5 \text{ std})$$

$$\sigma(\text{pp} \to \text{t\bar{t}W}) = 0.80 \stackrel{+0.12}{_{-0.11}}(\text{stat.}) \stackrel{+0.13}{_{-0.12}}(\text{sys.}) \text{ pb}$$
 (5.5 std)

**CMS-PAS TOP-17-005** 

0.2

CMS Preliminary

 $\sigma_{tfz}$  [pb]

2.5

1.5

0.5

0<sup>L</sup>

36 fb<sup>-1</sup> (13 TeV)

1.6

 $\sigma_{\rm t\bar{t}W}$  [pb]

1.8

2-D best fit

— 68% contour 95% contour — 1-D best fit

— 1-D tīZ ± 1σ — 1-D tĪW ± 1 σ ttZ theory

Htt tiw theory

1.4

1.2

# **Top-Higgs coupling: the hunt for tt+H**

Vital step towards verifying the SM nature of the Higgs boson

- Top quark: most strongly-coupled SM particle ( $y_t \sim 1$ )
- ttH (also tH): only direct access to yt
- Experimentally very challenging
  - Tiny signal and overwhelming background from tt+jets, tt+W/Z

![](_page_36_Figure_6.jpeg)

![](_page_36_Figure_7.jpeg)

Not observed so far, high priority for Run-II

M. Aldaya

# tt+H, H→bb

Allows investigating coupling of the Higgs boson to 3<sup>rd</sup> generation fermions

- $H \rightarrow b\bar{b}$  has largest BR, but huge background ( $t\bar{t}+b\bar{b}$ ) and associated large theory uncertainties on its modelling
- Categorize via tt l+jets, dilepton channels
- Classify according to number of jet and b-jets
- Use MVA techniques to further improve sensitivity (BDT, Matrix Element Method) 11.4 - 12.9 fb<sup>-1</sup> (13 TeV) Events  $10^{6}$ **CMS** Preliminarv tt+LF tt+cc 10<sup>5</sup> Dilepton tt+b tt+2b single-t tt+bb prefit 10<sup>4</sup> tt+V V+iets diboson  $10^{3}$ 10<sup>2</sup> 10 Data/Bkg. 1.5 0.5 ≥4 jets ≥4 b-tags BDT<0.23 ≥4 jets ≥4 b-tags BDT>0.23 3 jets 3 b-tags ≥4 jets 3 b-tags BDT>0.2 ≥4 jets 3 b-tags BDT<0.2

![](_page_37_Figure_6.jpeg)

Upper limit on  $\sigma_{ttH}$  of 1.5 (obs.) and 1.7 (exp.) x SM expectation Compatible with SM expectation at the level of 1.5 std

# tt+H, all searches

Many channels: bosonic (H $\rightarrow$ ZZ $\rightarrow$ 4I, H $\rightarrow$  $\gamma\gamma$ ), leptonic (H $\rightarrow$ WW, H $\rightarrow$  $\tau_{l}\tau_{anv}$ ), hadronic (H $\rightarrow$ bb, H $\rightarrow$  $\tau_{h}\tau_{h}$ )

#### $t\bar{t}$ +H, H $\rightarrow$ multileptons

![](_page_38_Figure_3.jpeg)

![](_page_39_Figure_0.jpeg)

# Single top quark

- Probe CKM matrix element |V<sub>tb</sub>|, EWK coupling structure
- Probe alternative production mechanisms (e.g heavy bosons, FCNC)

### Single top production: the big picture

#### Run-I:

- Main production mode: t-channel, measured to high precision
- Properties, differential distrbutions
- First observation of tW process
- Study of s-channel
- Rare single top modes explored
- tZq, tγ

![](_page_40_Figure_8.jpeg)

#### Run-II: ramping up towards new era of high-precision in single top

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

### "Direct" top quark mass

![](_page_43_Figure_1.jpeg)

### "Direct" top quark mass

![](_page_44_Figure_1.jpeg)

### "Direct" top quark mass

![](_page_45_Figure_1.jpeg)

Top mass results using direct methods are reaching a precision of order 500 MeV (< 0.3%)

- Dominant uncertainties:
  - Jet energy response calibration
  - Hadronization modelling
- Continuous efforts to:
  - Improve current techniques
  - Develop new methods
  - Combine results

# Top pole mass from $\sigma(t\bar{t})$

Mass dependence of predicted cross section allows determining  $m_{top}$  from measured  $\sigma(tt)$ 

![](_page_46_Figure_2.jpeg)

### Top quark mass: other "alternative" methods

![](_page_47_Figure_1.jpeg)

- Exploit experimentally clean(er) observables
  - Do not use jets  $\rightarrow$  avoid hadronization issues
- Alternative systematic sensitivities
- Non-conventional different channels

![](_page_47_Figure_6.jpeg)

### This is just the beginning...

- Run-II will end with 2018 leaving ~ 100 fb<sup>-1</sup> at 13 TeV
- Run-III will follow (2021), targeting ~ 300 fb<sup>-1</sup> at 14 TeV (new centre-of-mass energy)
- After: HL-LHC (Run-IV, 2015) and then future colliders (such as CLIC or FCC possible)
- Opportunities at future facilities start by almost unlimited precision in measurements
  - Directly translates into sensitivity to BSM in deviations
- Extreme regions of the phase space
- Very rare final states

![](_page_48_Figure_8.jpeg)

CMS-PAS FTR-16-006

49

### Summary

- Top physics: key to QCD, electroweak and New Physics
- In Run-I, the LHC became a real "top factory"
  - Top quark production & properties measurements entered precision regime
  - Started to challenge theory predictions in many respects
- First 13 TeV results !
  - Inclusive cross section measurements, differential distributions
  - First results for low cross section processes tt+X
  - First properties measurements start to appear
- - Trade off statistics for systematics
  - Improvements in MC models and theory calculations
  - Access to new physics in the top environment

#### The ultimate potential for top physics at the LHC is ahead of us

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

# **Additional information**