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The challenge from the LHC

✓ Everything (signals, backgrounds, luminosity measurement) involves QCD

✓ Strong coupling is not small: αs(MZ) ∼ 0.12 and running is important

➠ events have high multiplicity of hard partons

➠ each hard parton fragments into a cluster of collimated particles jet

➠ higher order perturbative corrections can be large

➠ theoretical uncertainties can be large

✓ Processes can involve multiple energy scales: e.g. pWT and MW

➠ may need resummation of large logarithms

✓ Parton/hadron transition introduces further issues, but for suitable (infrared safe)

observables these effects can be minimised

➠ importance of infrared safe jet definition

➠ accurate modelling of underlying event, hadronisation, ...

✓ ✓ Nevertheless, excellent agreement between theory and experiment over a wide

range of observables
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Cross Sections at the LHC
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Theory

LHC pp
√
s = 7 TeV

Data 4.5 − 4.9 fb−1

LHC pp
√
s = 8 TeV

Data 20.3 fb−1

LHC pp
√
s = 13 TeV

Data 0.08 − 14.8 fb−1

Standard Model Production Cross Section Measurements Status: August 2016

ATLAS Preliminary

Run 1,2
√
s = 7, 8, 13 TeV

excellent agreement between theory and experiment over a wide range of observables
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Discrepancies with data?
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– ZZ→ℓℓνν

– ZZ→4ℓ
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√
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Diboson Cross Section Measurements Status: August 2016

ATLAS Preliminary

Run 1,2
√
s = 7, 8, 13 TeV

No BSM discovered yet. . . but plenty of BNLO
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Theoretical Framework
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✓ partonic cross sections dσ̂ij

✓ running coupling αs(µR)

✓ parton distributions fi(x, µF )

✓ renormalization/factorization scale
µR, µF

✓ jet algorithm + parton shower + hadro-

nisation model + underlying event + ...
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Theoretical Uncertainties

- Missing Higher Order corrections (MHO)

- truncation of the perturbative series

- often estimated by scale variation - renormalisation/factorisation

✓ systematically improvable by inclusion of higher orders

✓ systematically improvable by resummation of large logs

- Uncertainties in input parameters

- parton distributions

- masses, e.g., mW , mh, [mt]

- couplings, e.g., αs(MZ)

✓ systematically improvable by better description of benchmark processes

- Uncertainties in parton/hadron transition

- fragmentation (parton shower)

✓ systematically improvable by matching/merging with higher orders

(✓ ) improvable by estimation of non-perturbative effects

- hadronisation (model)

- underlying event (tunes)

Goal: Reduce theory uncertainties by a factor of two compared to where we are now
in next decade
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The strong coupling

World Average

Year αs(MZ)

2008 0.1176 ± 0.0009

2012 0.1184 ± 0.0007

2014 0.1185 ± 0.0006

2016 0.1181 ± 0.0011

✓ Average of wide variety of

measurements

✓ τ -decays

✓ e+e− annihilation

✓ Z resonance fits

✓ DIS

✓ Lattice

✓ Generally stable to choice of mea-
surements

✓ Impressive demonstration of running

of αs past O(1 TeV)

✓ . . . but some outlier values from
global PDF fits, e.g.,

αs(MZ) ∼ 0.1136± 0.0004 JR14

αs(MZ) ∼ 0.1132± 0.0011 ABM14

αs(MZ) ∼ 0.1147± 0.0008 ABMP16

➠ Still need to understand uncertainty
and make more precise determination

1% on αs ➠ n% on process of O(αn
s )
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Parton Distribution Functions

All fits NNLO

Set DIS DY jets LHC errors

MMHT14 ✓ ✓ ✓ ✓ hessian

CT14 ✓ ✓ ✓ ✓ hessian

NNPDF3.0 ✓ ✓ ✓ ✓ Monte Carlo

HeraPDF2.0 ✓ ✘ ✘ ✘ hessian

ABM14 (ABMP16) ✓ ✓ ✓ ✘ (✓ ) hessian

JR14 ✓ ✓ ✓ ✘ hessian

✓ Clear reduction in gluon-gluon luminosity for MX ∼ 125 GeV

✓ . . . with commensurate reduction in uncertainty on Higgs cross section
– p. 10



Parton Distribution Functions

but still differences of opinion
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Parton Distribution Functions
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and disagreements even for the best measured cross sections

sensitivity to inputs into the PDF fits

✓ strange content of proton

✓ mass of charm quark
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Partonic cross sections

σ̂ ∼ αn
s
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NLO QCD

✓ NLO QCD is the current state of the art

NNLO QCD

✓ provides the first serious estimate of the theoretical uncertainty

✓ rapid development with many new results in past couple of years

NLO EW

✓ naively similar size to NNLO QCD

✓ particularly important at high energies/pT and near resonances

N3LO QCD

✓ recent landmark results for Higgs production

– p. 13



Motivation for more accurate theoretical calculations

✓ Theory uncertainty has big impact on

quality of measurement

➠ Revised wishlist of theoretical
predictions for

✚ Higgs processes

✚ Processes with vector bosons

✚ Processes with top or jets

Les Houches 2015,

arXiv:1605.04692

µ/µ∆
0 0.2 0.4

(+0j)
(+1j)

(VBF-like)
(ttH-like)
(VH-like)
(comb.)

(incl.)
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(comb.)

(ggF-like)
(VBF-like)

(ttH-like)
(VH-like)
(comb.)

(VBF-like)
(ttH-like)

(incl.)
(comb.)

ATLAS Simulation Preliminary
 = 14 TeV:s -1Ldt=300 fb∫ ; -1Ldt=3000 fb∫

µµ→H

ττ→H
ZZ→H

WW→H

γZ→H
γγ→H

µµ→H

ττ→H
ZZ→H

WW→H

γZ→H
γγ→H

0.7→

1.5→

0.8→
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What is the hold up?

Rough idea of complexity of process ∼ #Loops + #Legs (+ #Scales)

- loop integrals are ultraviolet/infrared

divergent

- complicated by extra mass/energy

scales

- loop integrals often unknown

✓ completely solved at NLO

- real (tree) contributions are infrared
divergent

- isolating divergences complicated

✓ completely solved at NLO

- currently far from automation

✓ mostly solved at NLO

Current standard: NLO

– p. 15



Anatomy of a Higher Order calculation

e.g. pp to JJ at NNLO

✓ double real radiation matrix elements dσ̂RR
NNLO

✚ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✚ explicit infrared poles from loop integral

✚ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✚ explicit infrared poles from loop integral

dσ̂NNLO ∼
∫

dΦm+2

dσ̂RR
NNLO +

∫

dΦm+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 16



Anatomy of a Higher Order calculation

e.g. pp to JJ at NNLO

✓ Double real and real-virtual contributions used in NLO calculation of X+1 jet

Can exploit NLO automation

. . . but needs to be evaluated in regions of phase space where extra jet is not

resolved

✚ Two loop amplitudes - very limited set known

. . . currently far from automation

✚ Method for cancelling explicit and implicit IR poles - overlapping divergences

. . . currently not automated
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IR cancellation at NNLO

✓ The aim is to recast the NNLO cross section in the form

dσ̂NNLO =

∫

dΦm+2

[
dσ̂RR

NNLO − dσ̂S
NNLO

]

+

∫

dΦm+1

[
dσ̂RV

NNLO − dσ̂T
NNLO

]

+

∫

dΦm

[
dσ̂V V

NNLO − dσ̂U
NNLO

]

where the terms in each of the square brackets is finite, well behaved in the

infrared singular regions and can be evaluated numerically.

✚ Much more complicated cancellations between the double-real, real-virtual and
double virtual contributions

✚ intricate overlapping divergences
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NNLO - IR cancellation schemes

Unlike at NLO, we do not have a fully general NNLO IR cancellation scheme

✚ Antenna subtraction Gehrmann, Gehrmann-De Ridder, NG (05)

✚ Colourful subtraction Del Duca, Somogyi, Trocsanyi (05)

✚ qT subtraction Catani, Grazzini (07)

✚ STRIPPER (sector subtraction) Czakon (10); Boughezal et al (11)

Czakon, Heymes (14)

✚ N-jettiness subtraction Boughezal, Focke, Liu, Petriello (15)

Gaunt, Stahlhofen, Tackmann, Walsh (15)

✚ Projection to Born Cacciari, Dreyer, Karlberg, Salam, Zanderighi (15)

Each method has its advantages and disadvantages

Analytic FS colour IS colour Azimuthal Approach

Antenna ✓ ✓ ✓ ✘ Subtraction

Colourful ✓ ✓ ✘ ✓ Subtraction

qT ✓ ✘ (✓ ) ✓ — Slicing

STRIPPER ✘ ✓ ✓ ✓ Subtraction

N-jettiness ✓ ✓ ✓ — Slicing

P2B ✓ ✓ ✓ — Subtraction – p. 19



What to expect from NNLO (1)

✓ Reduced renormalisation scale dependence

✓ Better able to judge convergence of perturbation series

✓ Fiducial (parton level) cross sections. Fully differential, so that experimental cuts
can be applied directly

✓ Event has more partons in the final state so perturbation theory can start to
reconstruct the shower
➠ better matching of jet algorithm between theory and experiment

LO NLO NNLO
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What to expect from NNLO (2)

✓ All channels present at NNLO

LO NLO NNLO

gg gg, qg gg, qg, qq

qq̄ qq̄, qg qq̄, qg, gg

✓ Better description of transverse momentum of final state due to double radiation

off initial state

LO NLO NNLO

✓ At LO, final state has no transverse momentum

✓ Single hard radiation gives final state transverse momentum, even if no

additional jet

✓ Double radiation on one side, or single radiation of each incoming particle

gives more complicated transverse momentum to final state
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NNLOJET

X. Chen, J. Cruz-Martinez, J. Currie, A. Gehrmann-De Ridder, T. Gehrmann,
NG, A. Huss, M. Jaquier, T. Morgan, J. Niehues, J. Pires

Implementing NNLO corrections using Antenna subtraction including decays for

✓ pp → H,W,Z

✓ pp → H + J 1408.5325, 1607.08817

✓ pp → Z + J 1507.02850, 1605.04295, 1610.01843

✓ pp → JJ 1301.7310, 1310.3993, 1611.01460

✓ ep → JJ + (J) 1606.03991

✓ . . .
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Inclusive pT spectrum of Z

pp → Z/γ∗ → ℓ+ℓ− +X

✚ large cross section

✚ clean leptonic signature

✚ fully inclusive wrt QCD radiation

✚ only reconstruct ℓ+, ℓ− so clean and
precise measurement
✚ potential to constrain gluon PDFs
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Inclusive pT spectrum of Z

✚ low pZT ≤ 10 GeV, resummation required

✚ pZT ≥ 20 GeV, fixed order prediction
about 10% below data
✘ Very precise measurement of Z pT
poses problems to theory,

D. Froidevaux, HiggsTools School

FEWZ/DYNNLO are Z + 0 jet @ NNLO

✘ Only NLO accurate in this distribution

✓ Requiring recoil means Z + 1 jet @

NNLO required
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Inclusive pT spectrum of Z

dσ̂

dpZT

∣∣∣∣
pZ
T
>20 GeV

≡ dσ̂ZJ
LO

dpZT
+

dσ̂ZJ
NLO

dpZT
+

dσ̂ZJ
NNLO

dpZT
(1)

✓ NLO corrections ∼ 40− 60%

✓ significant reduction of scale

uncertainties NLO → NNLO

✓ NNLO corrections relatively flat

∼ 4− 8%

✓ improved agreement, but not enough

✓ Note that for 66 GeV < mℓℓ <
116 GeV

σexp = 537.1± 0.45%± 2.8% pb

σNNLO = 507.9+2.4
−0.7 pb
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Normalised Z pT spectrum

1

σ
· dσ̂

dpZT

∣∣∣∣
pZ
T
>20 GeV

with

σ =

∫
∞

0

dσ̂

dpZT
dpZT ≡ σZ

LO+σZ
NLO+σZ

NNLO.

✓ Much improved agreement

✓ luminosity uncertainty cancels

✓ dependence on EW parameters
reduced

✓ dependence on PDFs reduced
➠ study

– p. 26



Single Jet Inclusive Distribution

Currie, NG, Pires (16)

✓ Classic jet observable

✓ Every jet in the event enters in the
distribution

✓ Expect sensitivity to PDFs

✓ ... and to αs

✓ All sub-processes included
– gg, gq, qq̄, qq etc

✓ in leading colour approximation

i.e. all α2
sN

2, α2
sNNF , α2

sN
2
F

contributions relative to Born

✘ missing corrections

O(1), NF /N , 1/N2, NF /N
3, 1/N4

✓ expect to be less than 10% of the

NNLO correction (as at NLO)
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Single Jet Inclusive Distribution – R=0.4

Currie, NG, Pires (16)

✓ ATLAS 7 TeV data, 4.5 fb−1

JHEP02(2015)153

JHEP09(2015)141 (Erratum)

✓ anti-kT algorithm with R = 0.4

✓ six rapidity slices,
0 – 0.5, 0.5 – 1.0, 1.0 – 1.5, 1.5 – 2.0,
2.0 – 2.5, 2.5 – 3.0

✓ NNPDF3.0_NNLO PDFs

✓ negligible NP corrections
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Single Jet Inclusive Distribution – R=0.4

Currie, NG, Pires (16)

✓ NLO describes the data pretty well

✓ NLO has relatively small scale
dependence

– because the central scale choice lies
close to the turning point in the scale

variation plot

✓ NNLO effects around 10% at low pT
and small at high pT
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Single Jet Inclusive Distribution – R=0.4

Currie, NG, Pires (16)

✓ To evaluate effect of higher orders, it

is often convenient to use K factors
e.g.

K =
dσNNLO/dpT
dσNLO/dpT

✓ Same PDFs used for LO, NLO, NNLO

✘ Can argue that should use

LO PDF for LO prediction,

NLO PDF for NLO prediction.

➠ Change to K is a higher order effect.

➠ This changes the K factor, by chang-

ing the more uncertain denominator
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Scale Choice

✓ no fixed hard scale for jet production

✓ two widely used scale choices

➠ leading jet pT (pT1)

➠ individual jet pT (pT )

✓ different scale changes PDF and αs

✓ no difference for back-to-back jet con-

figurations (only arises at higher or-

ders)

– p. 31



Scale Choice

At NLO, pT 6= pT1 for

✓ 3-jet rate (small effect)

✓ 2-jet rate (3rd parton falls outside jet)

Changing R has an effect on the cross sec-

tion, but also on the scale choice:

✓ introduces spurious R-dependence in
scale choice

✓ pT1 scale has no R-dependence at

NLO, unlike pT

✓ at NNLO pT1 scale depends on R in

some four-parton configurations

– p. 32



Single Jet Inclusive Distribution – R=0.4

µR = µF = pT1 µR = µF = pT

✘ Quite different behaviour!

✓ NLO with µ = pT1 describes R = 0.4 data quite well

✓ NNLO with µ = pT describes R = 0.4 data quite well
– p. 33



Single Jet Inclusive Distribution – R=0.4

µR = µF = pT1 µR = µF = pT

✘ Quite different behaviour!

➠ scale uncertainty much smaller than difference between scale choices

➠ explore alternative scale choices
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Single Jet Inclusive Distribution – R=0.4

✘ Scale uncertainty is smaller than the uncertainty in choosing pT or pT1

– p. 35



Single Jet Inclusive Distribution – R=0.6

µR = µF = pT1 µR = µF = pT

✘ Quite different behaviour!

✓ NLO with µ = pT describes R = 0.6 data quite well

✓ NNLO with µ = pT1 describes R = 0.6 data quite well – p. 36



Single Jet Inclusive Distribution – R=0.6

✘ Scale uncertainty is smaller than the uncertainty in choosing pT or pT1

– p. 37



Single Jet Inclusive Distribution – R=0.5

✓ CMS 7 TeV data
✘ increasing NP corrections with smaller jet pT

– p. 38



Single Jet Inclusive Distribution – R=0.7

✓ CMS 7 TeV data
✘ increasing NP corrections with increasing cone size

– p. 39



CPU cost

✓ Standalone production run with fixed
√
s, fixed R, fixed PDF, three scale variation

for µ = pT1 and µ = pT (Warmup ∼ 1-2%)

Job Type No. Jobs Runtime/Job (hr) Total Runtime

LO 200 0.5 100

NLO-V 500 1.5 750

NLO-R 500 2 1000

NNLO-VV 600 20 12000

NNLO-RV 2500 50 125000

NNLO-RRa 3500 50 175000

NNLO-RRb 2000 20 40000

353850

✓ because LO is independent of R and pT = pT1 to obtain different cone sizes/different

scales can do a (much cheaper) NLO 3-jet calculation

dσNNLO(R2)

dpT
=

dσNNLO(R1)

dpT
+

(
dσR(R2)

dpT
− dσR(R1)

dpT

)

+

(
dσRV (R2)

dpT
− dσRV (R1)

dpT

)
+

(
dσRR(R2)

dpT
− dσRR(R1)

dpT

)
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APPLfast-NNLO interface

NNLOJET + D. Britzger, C. Gwenlan, M. Sutton, K. Rabbertz

✓ write out grid in x1, x2, Q
2

✓ swap out PDFs and αs later at
virtually no aditional cost

✓ file size O(10− 100MB)

✘ need to fix binning beforehand

– p. 41



APPLfast-NNLO interface

✘ Still some work to do to combine interpolation grids

✓ But bridge code is working and expect new NNLO grids in 2017

Rabbertz, PDF4LHC 7 March 2017

– p. 42



Maximising the impact of NNLO calculations

Triple differential form for a 2 → 2 cross section

d3σ

dETdη1dη2
=

1

8π

∑

ij

x1fi(x1, µF ) x2fj(x2, µF )
α2
s(µR)

E3
T

|Mij(η
∗)|2

cosh4 η∗

✓ Direct link between observables ET ,

η1, η2 and momentum

fractions/parton luminosities

x1 =
ET
√
s
(exp(η1) + exp(η2)) ,

x2 =
ET
√
s
(exp(−η1) + exp(−η2))

✓ and matrix elements that only

depend on

η∗ =
1

2
(η1 − η2)

x1

ET2
η 2

η1ΕΤ1

x2
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Triple differential distribution

✓ Range of x1 and x2 fixed allowed LO

phase space for jets

ET ∼ 200 GeV at
√
s = 7 TeV

-5 -4 -3 -2 -1 0 1 2 3 4 5

η1

-5

-4

-3

-2

-1

0

1

2

3

4

5

η 2

 

 
 

 

 

 ✓ Shape of distribution can be

understood by looking at parton

luminosities and matrix elements (in

for example the single effective

subprocess approximation)

Giele, NG, Kosower, hep-ph/9412338
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Phase space considerations

✓ Phase space boundary fixed when

one or more parton fractions → 1.

I η1 > 0 and η2 > 0 OR η1 < 0 and
η2 < 0
➠ one x1 or x2 is less than xT

- small x

II η1 > 0 and η2 < 0 OR η1 < 0 and
η2 > 0
➠ both x1 and x2 are bigger than xT

- large x

III growth of phase space at NLO

(if ET1 > ET2)

[

x2
T < x1x2 < 1 and xT = 2ET /

√
s

]

-5 -4 -3 -2 -1 0 1 2 3 4 5

η1

-5

-4

-3

-2

-1

0

1

2

3

4

5

η 2

I

I
II

II

III

III
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Measuring PDF’s at the LHC?

Should be goal of LHC to be as self sufficient as possible!

Study triple differential distribution for as many 2 → 2 processes as possible!

✓ Medium and large x gluon and quarks

✓ pp → di-jets dominated by gg scattering

✓ pp → γ + jet dominated by qg scattering

✓ pp → γγ dominated by qq̄ scattering

✓ Light flavours and flavour separation at medium and small x

✓ Low mass Drell-Yan

✓ W lepton asymmetry

✓ pp → Z+jet

✓ Strangeness and heavy flavours

✓ pp → W± + c probes s, s̄ distributions

✓ pp → Z + c probes c distribution

✓ pp → Z + b probes b distribution

– p. 46



Measurements of strong coupling

✓ With incredible jet energy resolution, the LHC can do better!!

✓ by simultaneously fitting the parton density functions and strong coupling

✓ If the systematic errors can be understood, the way to do this is via the triple

differential cross section

Giele, NG, Yu, hep-ph/9506442

✓ and add NNLO W±+jet, Z+jet, γ+jet calculations (with flavour tagging) as they

become available

D0 preliminary, 1994
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Summary - Where are we now?

✓ First high precision N3LO calculations available

could help reduce Missing Higher Order uncertainty by a factor of two

✓ Substantial and rapid progress in NNLO

✚ many new calculations available

➠ improved descriptions of experimental data

— codes typically require significant CPU resource

✓ NNLO is emerging as standard for benchmark processes and could lead to

improved pdfs etc.

could help reduce theory uncertainty due to inputs by a factor of two

✓ NNLO automation?

- as we gain analytical and numerical experience with NNLO calculations, can

we further exploit the developments at NLO

- automation of two-loop contributions?

- automation of infrared subtraction terms?

✓ Is there a better way of estimating the theoretical uncertainties?
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Summary - NNLOJET

✓ NNLOJET is able to make a range of fully differential NNLO predictions for

fiducial cross sections that can be compared directly with data

✓ Z+jet

✚ inclusive pZT spectrum predicted to NNLO accuracy for pZT > pZT,cut

✚ observe a reduction of the scale uncertainty and an improvement in the
theory vs. data comparison

✚ Normalised distributions show excellent agreement between data and NNLO

✓ dijet

✚ single jet inclusive pT spectrum predicted to NNLO accuracy

— no obvious improvement in the theory vs. data comparison (R)

— difference between common scale choices pT and pT1 larger than scale

uncertainty

Work in progress:

✓ Including other processes, e.g W+jet, other Higgs decays, flavour tagged jets

✓ Studying potential of data to constrain PDF sets and interface to APPLfast-NNLO
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Back up slides
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Slicing v Subtraction example

V =
F (0)

ǫ
, R =

∫ 1

0

dx
F (x)

x1+ǫ

Slicing

σ = V +R

=
F (0)

ǫ

+

∫ X

0

dx
F (0)

x1+ǫ
+

∫ 1

X

dx
F (x)

x

= F (0) ln(X) +

∫ 1

X

dx
F (x)

x

✓ Approximation made for x < X

✓ X should be small, but not so small
that numerical errors dominate

✓ qT and N-jettiness schemes related to

soft-collinear resummation

Subtraction

σ = V +R

=
F (0)

ǫ
+

∫ 1

0

dx
S(x)

x1+ǫ

+

∫ 1

0

dx

[
F (x)

x1+ǫ
− S(x))

x1+ǫ

]

= finite +

∫ 1

0

dx

[
F (x)− S(x)

x

]

✓ S(x) → F (0) as x → 0

✓ integral of S(x) must be computed

✓ antenna, STRIPPER, ColorFul, P2B
all subtraction schemes
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Two Loop Master Integrals - analytic

✓ Smirnov (99); Smirnov, Tausk (99)

➠ enables pp → γγ, γJ , JJ

✓ Gehrmann and Remiddi (00,01,02)

➠ enables pp → WJ , ZJ , HJ , Wγ, Zγ,

e+e− → JJJ , ep → JJ(+J)

✓ Gehrmann, Tancredi, Weihs (13);

Gehrmann, von Manteuffel, Tancredi, Weihs (14);

Caola, Henn, Melnikov, Smirnov (14);

Papadopoulos, Tommasini, Wever (14)

➠ enables pp → WW , ZZ, WZ, HH

✓ now intensive work towards two-loop five point integrals
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Two Loop Master Integrals - analytic

✓ Basis functions for two-loop pentagon graphs with massless internal propagators

known - Goncharov Polylogs

G(an, an−1, . . . , a1, t) =

∫ t

0

dt

tn − an

G(an−1, . . . , a1, tn)

✓ Canonical (Henn) basis for evaluating integral as series in ǫ

∂x
~f = ǫÂx(x, y, z, . . .)~f

✓ Gehrmann, Henn, Lo Presti (15); Papadopoulos, Tomassini, Wever (15)

➠ enables pp → JJJ , γγJ , γγγ

✓ Papadopoulos, Tomassini, Wever (15)

➠ enables pp → V JJ , HJJ

✘ nonplanar graphs still unknown
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Two Loop Master Integrals - numeric

✓ Czakon (07); Bonciani, Ferroglia, Gehrmann, Studerus (09)

➠ enables pp → tt̄

✓

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (16)

➠ enables pp → HH at NLO with massive top loop

✓ now intensive work including additional scales
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Two Loop Master Integrals - numeric

✓ Integrals with massive propagators much more complicated, new types of

(elliptic) functions needing input from mathematics Tancredi, Remiddi (16); Adams,

Bogner, Weinzierl (15,16)

✓ e.g. Higgs plus Jet production via massive quark loop

✓ First results as one-fold (elliptic) integrals Bonciani et al (16)

✓ Light quark effects Melnikov et al (16)
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Antenna subtraction at NNLO

✓ Antenna subtraction exploits the fact that matrix elements already possess the
intricate overlapping divergences

✓ plus mappings i+ j + k → I + J , i+ j + k + l → I + L
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Antenna subtraction at NNLO

✓ Antenna mimics all singularities of QCD

✓ Phase space map smoothly interpolates momenta for reduced matrix element be-
tween limits

(1̃23) = xp1 + r1p2 + r2p3 + zp4

(2̃34) = (1− x)p1 + (1− r1)p2 + (1− r2)p3 + (1− z)p4
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Antenna subtraction at NNLO

✓ All unintegrated antennae available

✓✓ Final-Final Gehrmann-De Ridder, Gehrmann, NG, (05)

✓✓ Initial-Final Daleo, Gehrmann, Maitre, (07)

✓✓ Initial-Initial Daleo, Gehrmann, Maitre, (07)

NG, Pires, (10)

✓ All antennae analytically integrated

✓✓ Final-Final Gehrmann-De Ridder, Gehrmann, NG, (05)

✓✓ Initial-Final Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (10)

✓✓ Initial-Initial Gehrmann, Monni, (11)

Boughezal, Gehrmann-De Ridder, Ritzmann, (11)

Gehrmann, Ritzmann, (12)

✚ Laurent expansion in ǫ
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Automatically generating the code (1)
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Maple script: RR example

+F40a(i,j,k,l)*A4g0(1,2,[i,j,k],[j,k,l])
-f30FF(i,j,k)*f30FF([i,j],[j,k],l)

*A4g0(1,2,[[i,j],[j,k]],[[j,k],l])
. . .
+F 0,a

4 (i, j, k, l)A0
4(1, 2, (ĩjk), (j̃kl))

− f0
3 (i, j, k) f

0
3 ((ĩj), (j̃k), l)A

0
4(1, 2, [(ĩj), (j̃k)], (

˜
(j̃k)l))

. . .

✓ X0
4 , X0

3 (and X1
3 in RV) are unintegrated antennae

✓ [i,j,k] or (ĩjk) are mapped momenta
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Maple script: VV example

-(+1/2*calgF40FI(2,3)

+1/2*calgF31FI(2,3)

+b0/e*1/2*QQ(s23)*calgF30FI(2,3)

-b0/e*1/2*calgF30FI(2,3)

-1/2*calgF30FI(2,3)*1/2*calgF30FI(2,3)

-1/2*gamma2gg(z2)

+b0/e*1/2*gamma1gg(z2)

)*A4g0(1,2,3,4)

. . .

✓ X 0
4 , X 0

3 and X 1
3 are integrated anten-

nae

+

[
− 1

2
F0

4,g(s23)

− 1

2
F1

3,g(s23)

− b0
2ǫ

(
s23
µ2
R

)−ǫ

F0
3,g(s23)

+
b0
2ǫ

F0
3,g(s23)

+
1

4
F0

3,g(s23)⊗ F0
3,g(s23)

+
1

2
Γ(2)
gg (z2)

]
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Automatically generating the code (2)
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Maple script to produce driver template

R:=[

[A5g0,[g,g,g,g,g],1],

[B3g0,[qb,g,g,g,q],1/nc],

· · ·
]:

dσR
gg = NLO

(
αsN

2π

)[

+2
1

3!

(
∑

12

A5g0(1, 2, 3, 4, 5)− ggA5g0SNLO(1, 2, 3, 4, 5)

)

+
NF

N

(
∑

6

B3g0(3, 1, 2, 4, 5)− ggB3g0SNLO(3, 1, 2, 4, 5)

)

· · ·
]
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Checks

✓ Analytic pole cancellations for RV, VV

Poles
(
dσRV − dσT

)
= 0

Poles
(
dσV V − dσU

)
= 0

✓ Unresolved limits for RR, RV

dσS −→ dσRR

dσT −→ dσRV

qq̄ → Z + g3 g4 g5 (g3 soft & g4 ‖ q̄)

 0

 200

 400

 600

 800

 1000

 0.9999  0.99992  0.99994  0.99996  0.99998  1  1.00002  1.00004  1.00006  1.00008  1.0001

    1 outside the plot (   0,   0) 

    0 outside the plot (   0,   0) 

    0 outside the plot (   0,   0) 

#phase space points =  1000

Soft collinear - 3, 2/4

x=10-7

x=10-8

x=10-9
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