

Precision predictions for SUSY and GUT processes at hadron colliders

Michael Klasen (LPSC Grenoble) + G. Bozzi (Karlsruhe), B. Fuks (Freiburg), Q. Li (Karlsruhe) DESY Colloquium May 6-7, 2008

Outline

- 1. Beyond the Standard Model
 - Supersymmetry
 - Grand Unified Theories
- 2. Beyond fixed-order perturbation theory
 - Drell-Yan like processes at LO and NLO of (SUSY-) QCD
 - Transverse-momentum, threshold, and joint resummation
 - Parton showers in PYTHIA and MC@NLO
- 3. Numerical results and uncertainties
 - Transverse-momentum and invariant-mass spectra
 - Factorization- and renormalization-scale dependence
 - Parton-density uncertainties and non-perturbative effects
 - Resummation vs. Monte Carlo
 - Experimental issues
- 4. Summary

1 - Beyond the Standard Model

May 6-7, 2008

Beyond the Standard Model

- Where is the Higgs boson?
- Can we unify the electroweak and strong forces of nature?

- Is it possible to include gravity?
- Why is m_h « m_{Pl}?
- Why is there so little anti-matter? Why is CP-symmetry broken?
- What is dark matter made of?

<u>Supersymmetry</u>

- Where is the Higgs boson?
 - SUSY-relation: m_h < m_z (at 2-loop level < 135 GeV)
- Can we unify the electroweak and strong forces of nature?

Standard Model:

SUSY:

- Is it possible to include gravity?
 - Local symmetry \rightarrow supergravity \rightarrow graviton, gravitino
- Why is $m_h \ll m_{PL}$?
 - No quadratic divergences, cancellation of _____+ + ----
- Why is there so little anti-matter? Why is CP-symmetry broken?
 - SUSY contains numerous complex phases \rightarrow Phase in CKM matrix
- What is dark matter made of?
 - Stable LSP: Neutralino (mSUGRA, AMSB), gravitino (GMSB)

Minimal Supersymmetric Standard Model

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 \ H^0 \ A^0 \ H^{\pm}$
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \hspace{0.1 cm} \widetilde{t}_2 \hspace{0.1 cm} \widetilde{b}_1 \hspace{0.1 cm} \widetilde{b}_2$
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	(same)
$_{\rm sleptons}$	0	-1	$\widetilde{\mu}_L ~~\widetilde{\mu}_R ~~\widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L ~~ \widetilde{ au}_R ~~ \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$1/2 \\ (3/2)$	-1	\widetilde{G}	(same)

SUSY-breaking and its parameter space

- \checkmark No SUSY-particles observed \rightarrow SUSY must be broken above M_W
 - Soft breaking in "hidden" sector (D- or F-terms)
 - Mediated to "visible" sector by some interaction
 - Avoids reintroduction of quadratic divergences
 - But: Even the MSSM has 105 masses, phases, and mixing angles
- Grand Unified Theories:
 - $M_1(M_{GUT}) = M_2(M_{GUT}) \rightarrow M_1(M_W) = 5/3 \tan^2 \theta_W M_2(M_W)$
- Minimal supergravity (mSUGRA):
 - tan β, sign (μ); m₀, m_{1/2}, A₀
- Gauge mediation (GMSB):
 - tan β , sign (μ); Λ , n_q , n_l , M_{mess}
- Anomaly mediation (AMSB):
 - tan β, sign (μ); m₀, m_{aux}

Indirect constraints

Typical minimal supergravity spectrum

Direct mass limits

particle		Condition	Lower limit $({\rm GeV}/c^2)$	Source
$\widetilde{\chi}_1^{\pm}$	gaugino	$M_{\widetilde{\nu}} > 200 \mathrm{GeV}/c^2$	103	LEP 2
-		$M_{\widetilde{\nu}} > M_{\widetilde{\chi}\pm}$	85	LEP 2
		any $M_{\widetilde{\nu}}$	45	Z width
	Higgsino	$M_2 < 1 { m TeV}/c^2$	99	LEP 2
	GMSB		150	DØ isolated photons
	RPV	$LL\overline{E}$ worst case	87	LEP 2
		$LQ\overline{D} m_0 > 500 \text{ GeV}/c^2$	88	LEP 2
$\widetilde{\chi}_{1}^{0}$	indirect	any tan β , $M_{\widetilde{\nu}} > 500 \text{ GeV}/c^2$	39	LEP 2
		any $\tan \beta$, any m_0	36	LEP 2
		any $\tan \beta$, any m_0 , SUGRA Higgs	59	LEP 2 combined
	GMSB		93	LEP 2 combined
	RPV	$LL\overline{E}$ worst case	23	LEP 2
\tilde{e}_R	$e \widetilde{\chi}_1^0$	$\Delta M > 10 ~{\rm GeV}/c^2$	99	LEP 2 combined
$\widetilde{\mu}_R$	$\mu \tilde{\chi}_1^0$	$\Delta M > 10 \ { m GeV}/c^2$	95	LEP 2 combined
$\widetilde{\tau}_R$	$\tau \tilde{\chi}_1^0$	$M_{\widetilde{\chi}_1^0} < 20 ~{ m GeV}/c^2$	80	LEP 2 combined
$\widetilde{\nu}$			43	Z width
$\widetilde{\mu}_R,\widetilde{\tau}_R$		stable	86	LEP 2 combined
$\widetilde{t_1}$	$c \tilde{\chi}_1^0$	any $\theta_{\rm mix}, \Delta M > 10 \ {\rm GeV}/c^2$	95	LEP 2 combined
		any $\theta_{\rm mix}, M_{\widetilde{\chi}_1^0} \sim \frac{1}{2} M_{\widetilde{t}}$	115	CDF
		any $\theta_{\rm mix}$ and any ΔM	59	ALEPH
	$b\ell\widetilde{ u}$	any $\theta_{\rm mix}, \Delta M > 7 {\rm GeV}/c^2$	96	LEP 2 combined
\widetilde{g}	any $M_{\widetilde{q}}$		195	CDF jets+ $\not\!\!E_T$
\widetilde{q}	$M_{\widetilde{q}} = M_{\widetilde{g}}$		300	CDF jets+ $\not\!\!E_T$

6-

Grand Unified Theories (1)

- Green, Schwarz (1984):
 - 10-dim. string theories with $E_8 \times E_8$ or SO(32) symmetry anomaly-free
 - Only E₈ has chiral fermions (as does the Standard Model)
 - Compactification leads to E₆
- Symmetry breaking:
 - $E_6 \rightarrow SO(10) \times U(1)_{\Psi} \rightarrow SU(5) \times U(1)_X \times U(1)_{\Psi}$
 - Mixing: $Z'(\theta) = Z_{\psi} \cos \theta + Z_{\chi} \sin \theta$ and $Z''(\theta) = Z_{\psi} \sin \theta Z_{\chi} \cos \theta$,
 - Choose $\theta = 90^{\circ} \rightarrow Z' = Z_X$. Z_{Ψ} naturally acquires mass at higher scale
 - SU(10) \rightarrow SU(5) at same scale as SU(5) \rightarrow SU(3)_C x SU(2)_L x U(1)_Y
 - Gauge couplings: $g_{\chi} = \sqrt{\frac{5}{3}}g' = \sqrt{\frac{5}{3}}g \tan \theta_W = \sqrt{\frac{5}{3}}\frac{e}{\sqrt{1-\sin^2\theta_W}}$
 - Photon protected by U(1)_{em.}, but Z' can mix with Z: $\tan^2 \phi = \frac{m_Z^2 m_1^2}{m_2^2 m_Z^2}$
 - Large ratio $v_{10}^{\prime}/v_{SM}^{\prime} \rightarrow m_1 \simeq m_Z^{\prime} \ll m_2 \simeq m_{Z'}^{\prime}$
 - DELPHI: ϕ < 1.7 mrad for $m_{Z'}$ = 440 GeV

Grand Unified Theories (2)

- Many more possibilities:
 - If $R_{GUT} > R_{SM} \rightarrow additional U(1)'s$
- Models that survive precision electroweak data:
 - B L
 - SO(10)
 - E₆ (extended Higgs sector + additional charged fermions)
- Parameterization (anomaly cancellation + gauge invariance):
 - M. Carena, A. Daleo, B. Dobrescu, T. Tait, PRD 70 (2004) 093009
- Search for Z'-bosons at hadron colliders:
 - Tevatron (run II): M_{Z'} > 600 ... 900 GeV (CDF coll.)
 - LHC (100 fb⁻¹): M_{Z'} < 2.0 ... 5.0 TeV (ATLAS coll.)</p>
 - LHC (100 fb⁻¹): M_{Z'} < 3.4 ... 4.3 TeV (CMS coll.)</p>

 $\mathbf{Z}_{\mathbf{X}} \text{ couplings: } \mathcal{L} = \frac{g}{4\cos\theta_W} \bar{f} \gamma^{\mu} (v_f - a_f \gamma_5) f Z'_{\mu} \mathbf{I} \frac{v_d \ a_d \ v_u \ a_u}{2\sqrt{6s_W/3} - \sqrt{6s_W/3} \ 0 \ \sqrt{6s_W/3} \ -2\sqrt{6s_W/3} \ -\sqrt{6s_W/3} \ -\sqrt{$

2 - Beyond fixed-order perturbation theory

May 6-7, 2008

Drell-Yan like processes at LO

Slepton-pair production:

- Sleptons are often light
 - \rightarrow Decay into SM lepton and $E_{\rm T}$
- Large background from WW/tt production $\checkmark q$ \rightarrow Importance of accurate theoretical predictions

✓ Z'-boson production:

- $Z' \rightarrow II$ easily identifiable
 - \rightarrow Additional invariant-mass peak
- Irreducible background from SM Drell-Yan
 - \rightarrow Importance of accurate theoretical predictions

Beyond fixed-order perturbation theory (1)

Hadronic cross section:

$$\sigma_{gg} = \int_{\tau_0}^1 dx_1 \int_{\tau_0/x_1}^1 dx_2 \ g(x_1, \mu_F^2) g(x_2, \mu_F^2) \hat{\sigma}_{gg}(\hat{s} = x_1 x_2 s)$$

- Large scale / scheme uncertainties at LO:
 - Factorization scale / scheme in parton densities $g(x, \mu_F^2)$
 - Renormalization scale / scheme in $\alpha_s(\mu_R^2)$
- Reduction of the dependence at NLO:
 - Virtual loop contributions
 - Real emission contributions
- Calculation at NNLO, ...
- Resummation to all orders

[Hamberg, v. Neerven, Matsuura, 1991]

Beyond fixed-order perturbation theory (2)

- ✓ Main SUSY signal is E_T (cf. W-bosons)
 - $\rightarrow \text{Resummation of } \frac{\alpha_s^n}{q_T^2} \ln^m \frac{M^2}{q_T^2} \text{ terms when } q_T \rightarrow 0$ [Catani, de Florian, Grazzini, 2001]
- SUSY- and GUT-particles are heavy (cf. top-quarks):
 - $\rightarrow \text{Resummation of } \alpha_s^n \left(\frac{\ln^m(1-z)}{1-z}\right)_+ \text{ terms when } z = M^2/s \rightarrow 1$ [Krämer, Laenen, Spira, 1998]
- Both situations at the same time:
 - \rightarrow Joined resummation (m \leq 2n–1) [Kulesza, Sterman, Vogelsang, 2002]
- R-parity conservation:
 - Extra SUSY-particles must be created in pairs
 - Only Standard Model particle radiation at $O(\alpha_s)$. Beyond:
 - SUSY-/GUT-particles are massive \rightarrow no soft/collinear region

Drell-Yan like processes at NLO (1)

(SUSY-) QCD one-loop diagrams:

Real gluon/quark emission diagrams:

- C Z' production:
 - Same diagrams except for the SUSY loops
 - Sleptons are replaced by leptons

Drell-Yan like processes at NLO (2)

Total cross section:

$$\begin{aligned} \sigma &= \int_{(m_1+m_2)^2}^{S} dQ^2 \int_{\frac{Q^2}{S}}^{1} dx_A \int_{\frac{Q^2}{Sx_A}}^{1} dx_B \bigg\{ \sum_{ij=q,\bar{q}} f_{i/A}(x_A,\mu_f) f_{j/B}(x_B,\mu_f) \frac{d\hat{\sigma}_{qq}}{dQ^2} \\ &+ \sum_{i=q,\bar{q}} \bigg[f_{i/A}(x_A,\mu_f) f_{g/B}(x_B,\mu_f) + f_{g/A}(x_A,\mu_f) f_{i/B}(x_B,\mu_f) \bigg] \frac{d\hat{\sigma}_{qg}}{dQ^2} \bigg\}, \end{aligned}$$

- Quark-gluon contribution (from Drell-Yan):

$$\frac{d\hat{\sigma}_{qg}}{dQ^2} = \sigma_0 \frac{\alpha_s(\mu_r)}{2\pi} \frac{1}{2} \left[\frac{3}{2} + z - \frac{3}{2} z^2 + 2 P_{qg}(z) \left(\ln \frac{(1-z)^2}{z} - 1 + \ln \frac{Q^2}{\mu_f^2} \right) \right]$$

[Baer, Harris, Reno, Phys. Rev. D 57 (1998) 5871]

Drell-Yan like processes at NLO (3)

Resummation formalism (1)

- Mellin transform:
 - **Definition:** $F(N) = \int_0^1 dy \, y^{N-1} F(y)$
 - Logarithm: $\left(\frac{\ln(1-z)}{1-z}\right)_+ \rightarrow \ln^2 \overline{N} \text{ with } \overline{N} = N \exp[\gamma_E]$
 - Invariant-mass spectrum: $\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^2}(N) = \sum_{a,b} f_{a/h_1}(N+1) f_{b/h_2}(N+1) \hat{\sigma}^{(\mathrm{res})}_{ab}(N)$
- Fourier transform:
 - **Definition:** $F(b) = \int_{0}^{\infty} dx e^{-ibx} F(x)$
 - Logarithm: $\frac{1}{q_T^2} \ln \frac{M^2}{q_T^2} \rightarrow \ln \overline{b}^2 \text{ with } \overline{b} = \frac{bM}{2} \exp[\gamma_E]$
 - Transverse-momentum spectrum:

$$\frac{\mathrm{d}^2 \sigma^{(\mathrm{res})}}{\mathrm{d}M^2 \mathrm{d}q_T^2}(N, q_T) = \sum_{a, b} f_{a/h_1}(N+1) f_{b/h_2}(N+1) \int \frac{b}{2} \,\mathrm{d}b \,J_0(b \, q_T) \,\mathcal{W}_{ab}^F(N, b)$$

<u>Resummation formalism (2)</u>

Resummed partonic cross sections:

- $\hat{\sigma}_{ab}^{(\text{res})}(N) = \sigma^{(LO)} \tilde{C}_{ab}(N) \exp\left\{\mathcal{G}(N)\right\}$

• $\mathcal{W}_{ab}^{F}(N, b) = \mathcal{H}_{ab}^{F}(N) \exp\left\{\mathcal{G}(N, b)\right\}$ **Sudakov form factor:** $\mathcal{G}(N, L) = Lg^{(1)}(\alpha_{s}L) + \sum_{s}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2} g_{N}^{(n)}(\alpha_{s}L)$

- Can be computed perturbatively as series $\sin^{n=2} \alpha_s L [L=ln(...)]$
- Is process-independent
- Contains the singular soft-collinear radiation up to NLL order
- \checkmark Coefficient functions \tilde{c} and \mathcal{H}^{F} :
 - Can be computed perturbatively as series in α_s
 - Are process-dependent
 - Contain the regular terms in the limits $N \rightarrow \infty$ and $b \rightarrow \infty$

Resummation formalism (3)

C Logarithms:

	q_T	Joint	Threshold
$L = \ln()$	$\bar{b}^{2} + 1$	$ar{b}+rac{ar{N}}{1+rac{ar{b}}{4ar{N}}}$	Ñ

- Transverse-momentum resummation:
 - Process-independent Sudakov form factor
 - Resummation only at large b, no artifacts at small b ("+1")
- Threshold resummation:
 - Consistent inclusion of collinear radiation in the C-function
- Joint resummation:
 - q_T and threshold resummation limits reproduced for large b and N
 - Process-independent Sudakov form factor
 - No subleading terms in perturbative expansions of $\sigma^{(res)}(\eta=1/4)$

Resummation formalism (4)

Three different kinematical regions:

- Regular regions ($z \ll 1$, $q_T \gg 0$): Fixed-order (F.O.) reliable
- Singular regions ($z \rightarrow 1$, $q_T \rightarrow 0$): Resummation (res) reliable
- Intermediate regions: Both contributions needed
- Reorganization of the cross section:
 - Separate regular/singular terms, re-expand (exp) res. part
 - Matching procedure avoids double-counting:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}M^{2}}(\tau) = \frac{\mathrm{d}\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^{2}}(\tau) + \oint_{C_{N}} \frac{\mathrm{d}N}{2\pi i} \tau^{-N} \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2}}(N) - \frac{\mathrm{d}\sigma^{(\mathrm{exp})}}{\mathrm{d}M^{2}}(N) \right]$$
$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}M^{2} \mathrm{d}q_{T}^{2}}(\tau, q_{T}) = \frac{\mathrm{d}^{2}\sigma^{(\mathrm{F.O.})}}{\mathrm{d}M^{2} \mathrm{d}q_{T}^{2}}(\tau, q_{T}) + \oint_{C_{N}} \frac{\mathrm{d}N}{2\pi i} \tau^{-N} \int \frac{b\mathrm{d}b}{2} J_{0}(q_{T} b)$$
$$\times \left[\frac{\mathrm{d}^{2}\sigma^{(\mathrm{res})}}{\mathrm{d}M^{2} \mathrm{d}q_{T}^{2}}(N, b) - \frac{\mathrm{d}^{2}\sigma^{(\mathrm{exp})}}{\mathrm{d}M^{2} \mathrm{d}q_{T}^{2}}(N, b) \right].$$

Parton showers in PYTHIA

- C LO matrix elements:
 - Parton branching: Sudakov form factor up to LL order
- Initial-state parton shower:
 - Hard scattering ($Q \approx M_{Z'}$) \rightarrow preceding branchings ($Q_0 = 1 \text{ GeV}$)
 - Power shower $(Q = \sqrt{S}) \rightarrow populate full phase space$
- n+1 parton matrix elements [Miu, Sjöstrand (1999)]:
 - $R_{q\bar{q}\to(\gamma,Z,Z')g}(s,t) = \frac{(d\sigma/dt)_{\rm ME}}{(d\sigma/dt)_{\rm PS}} = \frac{\sum_{i=\gamma,Z,Z'} [t^2 + u^2 + 2m_i^2 s] + \text{interference terms}}{\sum_{i=\gamma,Z,Z'} [s^2 + m_i^4] + \text{interference terms}} \in [1/2;1] \rightarrow \text{reweight PS}$ $R_{qg\to Vq}(s,t) = \frac{(d\sigma/dt)_{\rm ME}}{(d\sigma/dt)_{\rm PS}} = \frac{\sum_{i=\gamma,Z,Z'} [s^2 + u^2 + 2m_i^2 t] + \text{interference terms}}{\sum_{i=\gamma,Z,Z'} [s(s-m_i^2)^2 + m_i^4] + \text{interference terms}} \in [1;3] \rightarrow \text{preweight PS}$
- QED parton shower:
 - No significant difference observed
- ✓ Intrinsic $\langle k_T \rangle$ (below Q₀ = 1 GeV):
 - Not uniquely defined, non-perturbative regime \rightarrow set $\langle k_T \rangle = 0$

Parton showers in MC@NLO

- Initial-state parton shower (HERWIG):
 - Coherent branchings $i \rightarrow jk$ with $z_j = E_j/E_i$ DGLAP-distributed
 - Emission angles $\theta_{jk}^2/2 \approx (p_j.p_k)/(E_jE_k)$ Sudakov-distributed up to LL
 - Backward evolution ($Q_0 = 2.5 \text{ GeV}$) \rightarrow non-perturbative stage
 - Forced splitting of non-valence partons
- NLO matrix elements [Frixione, Webber (2002)]:
 - Born-like or standard events (S)
 - Hard emission events (H)
 - Add/subtract NLO part of Sudakov \rightarrow J_(S,H) finite and positive
 - Assign weight $w_i^{(S,H)} = \pm 1$
 - Total cross section: $\sigma_{tot} = \sum_{i=1}^{N_{tot}} w_i^{(S,H)} (J_H + J_S) / N_{tot}$
- Implementation of Z' [Fuks, Klasen, Ledroit, Li, Morel (2007)]:
 - http://lpsc.in2p3.fr/klasen/software/

3 - Numerical results and uncertainties

- mSUGRA (SPS1a/BFHK-B, $m_1 \approx 100-200$ GeV)
- Resummation effects:
 - Finite cross section at small q_T, enhanced cross section at intermediate q_T
 - Very small difference in joint resummation from ln(N) at intermediate q_T

- K-factors:
 - $d\sigma^{(NLO/NLO+NLL)}/d\sigma^{(LO)}$, small effect from squark pair-production threshold
- **Resummation effects:**
 - At small (large) M, $d\sigma^{(res)} \approx d\sigma^{(exp)} (d\sigma^{(F.O.)} \approx d\sigma^{(exp)}) \rightarrow F.O.$ (res) dominates
 - Larger difference in joint resummation from In(b) at non-asymptotic N 0

Factorization-/renormalization scale dependence

- GUT scenario:
 - $M_{Z'} = 1$ TeV with U(1)_X couplings
- Scale dependence:
 - q_T-spectrum (integrated over M): NLO (10%), NLO+NLL (5%)
 - σ_{tot} (900 GeV < M < 1200 GeV): LO (7%), NLO (17%), NLO+NLL (9%)

- Uncertainty band (CTEQ6):
 - Variations along 20 independent directions spanning 90% C.L. of fitted data
 - Uncertainty remains modest (\approx 10%), similar to scale dependence

Non-perturbative effects (1)

- • $b \ge 1$ GeV⁻¹ non-perturbative • CSS freeze b at $b_{max} \approx 0.5 \text{ GeV}^{-1}$: $\widetilde{W}_{j\bar{k}}(b) = \widetilde{W}_{j\bar{k}}^{pert}(b_*)\widetilde{W}_{j\bar{k}}^{NP}(b)$, $b_* = \frac{b}{\sqrt{1 + (b/b_{max})^2}}$ Control Contro • $W^{NP}(b) = \exp[-b^2(g_1 + g_2 \log(Qb_{max}/2))]$ (Gauss.) 0.0160.02 g_1 0.210.540.550.68Ladinsky-Yuan [PRD 50 (1994) 4239]: 0.00 -1.50-0.60 q_3 • $W^{NP}(b) = \exp[-b^2(g_1+g_2\log(Qb_{max}/2))-b g_1g_3\log(100x_1x_2)] /$ Brock-Landry-Nadolsky-Yuan [PRD 67 (2003) 073016]: • $W^{NP}(b) = \exp[-b^2(g_1 + g_2\log(Qb_{max}/2)) - b^2g_1g_3\log(100x_1x_2)]$ Konychev-Nadolsky [PLB 633 (2006) 710]: ★ E288
 ■ E605
 ▲ CDF Z
 ▲ D0 Z
 ▲ R209
 - Same as BLNY, but $b_{max} = 1.5 \text{ GeV}^{-1}$ (ext. pert.)
 - $g_1 = 0.201, g_2 = 0.184, g_3 = -0.129$

• Under good control (< 5%) for sufficiently large q_T (> 5 GeV)

Resummation vs. Monte Carlo (1)

[Fuks, Ledroit, Li, Morel, Klasen, arXiv:0711.0749, NPB (in press)]

- NNLO:
 - Total cross section only, agrees well with NLO+NLL (not shown)
- Performance of Monte Carlo programs:
 - PYTHIA mass-spectrum renormalized by 1.26, q_T-spectrum too soft
 - MC@NLO (NLO+LL) agrees well with resummation (NLO+NNLO)

Experimental issues (1)

[Lester, Summers, Phys. Lett. B 463 (1999) 99]

Experimental issues (2)

Subquarks at the Tevatron?

[CDF Coll., PRL 77 (1996) 438]

[Klasen, Kramer, PLB386(1996)384]

Higher order effects?

Experimental issues (3)

- Calculation valid for all sleptons, but third generation particularly interesting \rightarrow SUSY-breaking parameters
- τ-identification in ATLAS: [Hinchliffe, NPB PS 123 (2003) 229]
 - Requires significant q_T
 - Leptonic decays: q_T + direct leptons \rightarrow 100 \times
 - Hadronic decays: $g_T + QCD$ jets $\rightarrow 10 \times larger$
 - Low multiplicity / inv. mass, tuned in Z-decay

- *τ*-identification in CMS: [Gennai, NPB PS 123 (2003) 244]
 - Dedicated calorimeter trigger
 - Isolated tracks, matched to calorimeter jet axis
 - Reduces QCD background by factor 1000

<u>Summary</u>

- 1. Beyond the Standard Model

 - GUTs: SO(10) \rightarrow Z'-bosons \rightarrow DY mass peak \rightarrow early discovery
- 2. Beyond fixed-order perturbation theory
 - Drell-Yan like processes at LO and NLO of (SUSY-) QCD
 - Transverse-momentum, threshold and joint resummation
 - Parton showers in PYTHIA and MC@NLO
- 3. Numerical results and uncertainties
 - Resummation: NLO+NLL \rightarrow precise, important far from crit. region
 - Monte Carlos : (N)LO+LL \rightarrow easier implementation in exp. analysis
 - Uncertainties: Scales + PDFs~< 10%, non-perturb. effects < 5%
- 4. Perspectives
 - Continue resummation program, experimental studies (sleptons, ...)
 - Theory LHC France, France China Particle Physics Laboratory

Further reading

- Constraints:
 - mSUGRA: Bozzi, Fuks, Herrmann, MK, Nucl. Phys. B 787 (2007) 1
- Resummation:
 - q_T: Bozzi, Fuks, MK, Phys. Rev. D 74 (2006) 015001
 - Threshold:Bozzi, Fuks, MK, Nucl. Phys. B 777 (2007) 157
 - Joint: Bozzi, Fuks, MK, arXiv:0709.3057 (NPB, in press)
- MC@NLO:
 - Z': Bozzi, Fuks, Ledroit, Li, MK, arXiv:0711.0749 (NPB in ...), ATLAS note in preparation
 - Sleptons: In preparation (with CMS in Karlsruhe)
- \checkmark Dark matter annihilation: Δm_b -resummation
 - A⁰-funnel: Herrmann, MK, Phys. Rev. D 76 (2007) 117704
- Downloads:
 - http://lpsc.in2p3.fr/klasen/software
 - http://pheno.physik.uni-freiburg.de/~fuks/resum.html

Backup slides

Dark matter annihiliation (1)

- Astrophysical evidence for dark matter:
 - Rotational spectra of spiral galaxies
 - Matter distribution after collision of two galaxy clusters
- \checkmark Relic density (WMAP, 2σ):
 - 0.094 < Ω_{CDM} h² < 0.136 with Ω_{CDM} h² = $m_{X_1^0} n_0 / \rho_c \propto \langle \sigma_{eff} v \rangle^{-1}$
 - Boltzmann eq.: $\frac{dn}{dt} = -3Hn \langle \sigma_{\text{eff}} v \rangle (n^2 n_{eq}^2)$ (DarkSUSY, micrOMEGAs)
- Supersymmetry:
 - P_R -conservation \rightarrow LSP \widetilde{X}_1^0 is stable \rightarrow (co-)annihilation (v « c)
 - Large tan β : $\widetilde{X}_1^0 \widetilde{X}_1^0 \rightarrow A^0 \rightarrow b\overline{b}$
 - LO cross section:

$$\sigma_{\rm LO} v = \frac{1}{2} \frac{\beta_b}{8\pi s} \frac{N_C g^2 T_{A11}^2 h_{Abb}^2 s^2}{|s - m_A^2 + im_A \Gamma_A|^2}$$
 with $h_{Abb} = -g m_b \tan \beta / (2m_W)$

Dark matter annihiliation (2)

QCD corrections:

- At $m_b^2 \ll s \ (\beta_b \rightarrow 1)$: $\Delta_{QCD}^{(1)} \simeq \left(\frac{\alpha_s(s)}{\pi}\right) C_F \left[-\frac{3}{2} \log \frac{s}{m_b^2} + \frac{9}{4}\right]$
- Resummation: $m_b \rightarrow m_b(s)$
- Finite terms (MS scheme): $\Delta_{\text{QCD}} = \left(\frac{\alpha_s(s)}{\pi}\right) C_F \frac{17}{4} + \left(\frac{\alpha_s(s)}{\pi}\right)^2 (35.94 - 1.36n_f) + \left(\frac{\alpha_s(s)}{\pi}\right)^3 (164.14 - 25.76n_f + 0.259n_f^2)$
- Top-loop corrections:
 - Separately gauge invariant

•
$$\Delta_{\text{top}} = \frac{1}{\tan^2 \beta} \left(\frac{\alpha_s(s)}{\pi}\right)^2 \left[\frac{23}{6} - \log \frac{s}{m_t^2} + \frac{1}{6} \log^2 \frac{\bar{m}_b^2(s)}{s}\right]$$

SUSY-QCD corrections:

•
$$\Delta m_b = \left(\frac{\alpha_s(s)}{\pi}\right) C_F \frac{m_{\tilde{g}}}{2} (A_b - \mu \tan \beta) I(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2)$$

$$\Delta_{\text{SUSY}}^{(\text{LE})} = \left(\frac{\alpha_s(s)}{\pi}\right) C_F\left(1 + \frac{1}{\tan^2\beta}\right) m_{\tilde{g}}\mu \tan\beta I\left(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, m_{\tilde{g}}^2\right)$$

Dark matter annihilation (3)

[Herrmann, Klasen, PRD 76 (2007) 117704]

Transverse-momentum resummation (1)

- Massive, color-less final state F, produced without q_T at LO
- Beyond LO: (Dominant) region of $q_T^2 \ll Q^2 \rightarrow \alpha_S^n/q_T^2 \log^{2n-1}Q^2/q_T^2$
- Re-organized cross section: $\frac{d\sigma_F}{dQ^2 da_T^2 d\phi} = \left[\frac{d\sigma_F}{dQ^2 da_T^2 d\phi}\right] + \left[\frac{d\sigma_F}{dQ^2 da_T^2 d\phi}\right]_{a}$
- **r** Resummed part: $\left[\frac{Q^2 d\sigma_F}{dQ^2 dq_T^2 d\phi}\right]_{res} = \sum_{res} \int_0^1 dx_1 \int_0^1 dx_2 \int_0^\infty db \, \frac{b}{2} \, J_0(bq_T) \, f_{a/h_1}(x_1, b_0^2/b^2) \, f_{b/h_2}(x_2, b_0^2/b^2) \, s$ $\sum_{c} \int_{0}^{1} dz_{1} \int_{0}^{1} dz_{2} \left[C_{ca}^{F}(\alpha_{\rm S}(b_{0}^{2}/b^{2}), z_{1}) C_{\bar{c}b}^{F}(\alpha_{\rm S}(b_{0}^{2}/b^{2}), z_{2}) \delta(Q^{2} - z_{1}z_{2}s) \right]$
 - Coefficient functions:
 - Sudakov form factor: $\exp\left\{-\int_{b^2/b^2}^{Q^2} \frac{dq^2}{q^2} \left[A_c(\alpha_{\rm S}(q^2))\right] \log \frac{Q^2}{q^2} + B_c(\alpha_{\rm S}(q^2))\right] \right\} \frac{d\sigma_{c\bar{c}}^{(LO)F}}{d\phi}$
- Coefficient functions $A(\alpha_{s})$, $B(\alpha_{s})$, $C(\alpha_{s})$:
 - Compare order-by-order with known fixed-order result
 - Extract from known IR-behavior of tree-level / 1-loop amplitudes
 - Work in moment-space (Davies, Stirling): $\Sigma(N) = \int_{0}^{1-2q_T/Q} dz \, z^N \frac{Q^2 q_T^2}{d\sigma_0/d\phi} \frac{d\sigma}{da_{\pi}^2 dO^2 d\phi}$
- Finite part: Subtract truncated expansion of $\sigma_{\text{res.}} \rightarrow \frac{d\hat{\sigma}_{ab}^{(\text{fin.})}}{da_{\tau}^2} = \left[\frac{d\hat{\sigma}_{ab}}{da_{\tau}^2}\right]_{\text{f.o.}} \left[\frac{d\hat{\sigma}_{ab}^{(\text{res.})}}{da_{\tau}^2}\right]_{\text{f.o.}}$

[De Florian, Grazzini, Nucl. Phys. B 616 (2001) 247]

Transverse-momentum resummation (2)

- Resummed part (moment-space):
 - PDFs evaluated at μ_F^2 : $\Sigma(N) = \sum_{i,j} f_{i/h_1}(N, \mu_F^2) f_{j/h_2}(N, \mu_F^2) \Sigma_{ij}(N)$
 - Partonic cross section: $\Sigma_{ij}(N) = \sum_{a,b} \int_0^\infty b \, db \frac{q_T^2}{2} J_0(bq_T) \, C_{ca}^F\left(N, \alpha_S\left(b_0^2/b^2\right)\right) \, C_{\overline{cb}}^F\left(N, \alpha_S\left(b_0^2/b^2\right)\right) \\ \exp\left\{-\int_{b^2/b^2}^{Q^2} \frac{dq^2}{q^2} \left[A_c(\alpha_S(q^2)) \log \frac{Q^2}{q^2} + B_c^F(\alpha_S(q^2))\right] \int_{b^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \left(\gamma_{ai} + \gamma_{bj}\right) (N, \alpha_S(q^2))\right\}$
 - 1st -order expansion:
 - 2nd-order expansion:

$$\begin{split} \sup_{a,b} \left\{ -\int_{b_0^2/b^2}^{Q^2} \frac{dq^2}{q^2} \left[A_c(\alpha_{\rm S}(q^2)) \log \frac{Q^2}{q^2} + B_c^F(\alpha_{\rm S}(q^2)) \right] - \int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \left(\gamma_{ai} + \gamma_{bj} \right) \left(N, \alpha_{\rm S}(q^2) \right) \right\} \\ \Sigma_{c\bar{c}}^{(1)}(N) &= A_c^{(1)} \log \frac{Q^2}{q_T^2} + B_c^{(1)} + 2\gamma_{cc}^{(1)}(N) \\ \Sigma_{c\bar{c}}^{(2)}(N) &= \log^3 \frac{Q^2}{q_T^2} \left[-\frac{1}{2} \left(A_c^{(1)} \right)^2 \right] + \log^2 \frac{Q^2}{q_T^2} \left[-\frac{3}{2} \left(B_c^{(1)} + 2\gamma_{cc}^{(1)}(N) \right) A_c^{(1)} + \beta_0 A_c^{(1)} \right] \\ &+ \log \frac{Q^2}{q_T^2} \left[A_c^{(2)} + \beta_0 \left(B_c^{(1)} + 2\gamma_{cc}^{(1)}(N) \right) - \left(B_c^{(1)} + 2\gamma_{cc}^{(1)}(N) \right)^2 + 2A_c^{(1)} C_{cc}^{(1)F}(N) - 2\sum_{i\neq c} \gamma_{ci}^{(1)}(N) \gamma_{ijc}^{(1)}(N) \right] \\ &+ B_c^{(2)F} + 2\gamma_{cc}^{(2)}(N) + 2 \left(B_c^{(1)} + 2\gamma_{cc}^{(1)}(N) \right) C_{cc}^{(1)F}(N) + 2\zeta(3) \left(A_c^{(1)} \right)^2 - 2\beta_0 C_{cc}^{(1)F}(N) + 2\sum_{i\neq c} \left[C_{ci}^{(1)F}(N) \gamma_{jc}^{(1)}(N) \right] \end{split}$$

IL: $A_q^{(1)} = 2C_F$ A^(1,2) universal, same as in threshold resummation
NLL: $A_q^{(2)} = 2C_F K$ with $K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} n_f T_R$, $B_q^{(1)} = -3C_F$ (universal), $C_{ab}^{(1)F}(z) = -\hat{P}_{ab}^{\epsilon}(z) + \delta_{ab} \delta(1-z) \left(C_a \frac{\pi^2}{6} + \frac{1}{2}A_a^F(\phi)\right)$ with $A_q^{DY} = C_F \left(-8 + \frac{2}{3}\pi^2\right)$ NNLL: $A_q^{(3)}$ only num. known [Vogt], $B_a^{(2)F} = -2\gamma_a^{(2)} + \beta_0 \left(\frac{2}{3}C_a\pi^2 + A_a^F(\phi)\right)$, $C_q^{(2)F}$

Transverse-momentum resummation (3)

- \checkmark Modified coefficient function B(α_s):
 - $\widehat{B}_N(\alpha_{\rm S}) = B(\alpha_{\rm S}) + 2\beta(\alpha_{\rm S}) \, \frac{d\ln C_N(\alpha_{\rm S})}{d\ln \alpha_{\rm S}} + 2\gamma_N(\alpha_{\rm S})$
 - Process-independent
- Universal "Sudakov" form factor:
- \checkmark "Resummation scale": $\ln M^2 b^2 = \ln Q^2 b^2 + \ln M^2/Q^2$
 - Arbitrary separation of coefficient functions and form factor
 - Expansion parameter: $L \equiv \ln \frac{Q^2 b^2}{b_0^2}$
 - Modified exp. param.: $\tilde{L} \equiv \ln \left(\frac{Q^2 b^2}{b_0^2} + 1 \right) \rightarrow 0$, when Qb $\ll 1$
 - Removes resummation in large- q_T region: $exp{\mathcal{G}(\alpha_S, \tilde{L})} \rightarrow 1$ [Bozzi, Catani, De Florian, Grazzini, NPB 737 (2006) 73]

Threshold resummation

Perturbative cross section:

- For q_T -resummation \rightarrow need only real emission
- For threshold resummation \rightarrow need also virtual corrections
- Now include squark mixing $\rightarrow \sigma_{q\bar{q}}^{(1;\text{SUSY})}\left(z,M^2;\frac{M^2}{\mu_F^2},\frac{M^2}{\mu_R^2}\right) = \frac{\alpha^2 \pi C_F \beta^3}{36 M^2} \left[f_W \frac{\left|L_{W\bar{l}_t\bar{\nu}_t}\right|^2}{82 x_W^2 (1-x_W)^2 (1-m_W^2/M^2)^2}\right] \delta(1-z)$

 $S(N, \alpha_s) = q_1(\lambda) \ln \bar{N} + q_2(\lambda)$

- Resummation procedure:
 - Threshold logarithms: $\lambda = [\beta_0 \alpha_s \ln N]/\pi$
 - Resummed cross section: $\hat{\sigma}_{ab}^{(\text{RES})}(N,\alpha_s) = \sigma_0^{(\prime)} C_{ab}(\alpha_s) \exp\left[S(N,\alpha_s)\right]$
 - Exponential form factor:

• **NLL:**
$$g_2(\lambda) = \frac{A_1\beta_1}{\beta_0^3} \left[2\lambda + \ln(1-2\lambda) + \frac{1}{2}\ln^2(1-2\lambda) \right] - \frac{A_2}{\beta_0^2} \left[2\lambda + \ln(1-2\lambda) \right]$$

 $+ \frac{A_1}{\beta_0} \left[2\lambda + \ln(1-2\lambda) \right] \ln \frac{M^2}{\mu_R^2} - \frac{2A_1\lambda}{\beta_0} \ln \frac{M^2}{\mu_F^2},$

Joint resummation

- Initial-state soft-gluon radiation:
 - q_T and threshold logarithms
 - Reproduce LL and NLL in limits $\bar{b} \to \infty$ and $\bar{N} \to \infty$
 - Joint resummation: $\chi(\bar{b},\bar{N}) = \bar{b} + \frac{\bar{N}}{1+\eta \bar{b}/\bar{N}}$ with $\bar{b} \equiv b M e^{\gamma_E}/2$ and $\bar{N} \equiv N e^{\gamma_E}$ [Laenen, Sterman, Vogelsang, PRD 63 (2001) 114018]
 - Choose $\eta = \frac{1}{4} \rightarrow$ no sizeable subleading terms

Resummed cross section:

- $= \frac{\mathrm{d}^2 \sigma^{(\mathrm{res})}}{\mathrm{d}M^2 \,\mathrm{d}p_T^2}(N,b) = \sum_{a,b,c} f_{a/h_a}(N+1;\mu_F) f_{b/h_b}(N+1;\mu_F) \,\hat{\sigma}_{c\bar{c}}^{(0)} \exp\left[\mathcal{G}_c(N,b;\alpha_s,\mu_R)\right] \left[\delta_{ca}\delta_{\bar{c}b} + \sum_{n=1}^{\infty} \left(\frac{\alpha_s(\mu_R)}{\pi}\right)^n \,\mathcal{H}_{ab\to c\bar{c}}^{(n)}(N;\mu_R,\mu_F)\right]$
- **Regular part:** $\mathcal{H}_{ab \to c\bar{c}}^{(1)}\left(N;\mu_R,\mu_F\right) = \delta_{ca}\delta_{\bar{c}b} H_{c\bar{c}}^{(1)}(\mu_R) + \delta_{ca} C_{\bar{c}/b}^{(1)}(N) + \delta_{\bar{c}b} C_{c/a}^{(1)}(N) + \delta_{\bar{c}b} \gamma_{c/a}^{(1)}(N) + \delta_{\bar{$
- DY scheme: $H_{c\bar{c}}^{(1)}(\mu_R) \equiv 0, \quad C_{q/q}^{(1)}(N) = \frac{2}{3N(N+1)} + \frac{\pi^2 8}{3}, \text{ and } \quad C_{q/g}^{(1)}(N) = \frac{1}{2(N+1)(N+2)}$
 - Eikonal factor: $\mathcal{G}_c(N,b;\alpha_s,\mu_R) = g_c^{(1)}(\lambda) \ln \chi + g_c^{(2)}(\lambda;\mu_R)$