Observation of Single Top Quark Production at the Tevatron

Dominic Hirschbühl

Collaborations

Physics Seminar DESY Hamburg 16.06.2009

Why Studying Top Quarks ?

By far the heaviest know elementary particle.

Tight connection to the Higgs-Boson and Electroweak Symmetry Breaking

It decays before it hadronizes.

It is still a teenager, discovered in 1995, and still not many have been seen!

Top Quark Production

Why measure single top ?

- Test of standard model predictions
 Does this process exist?
 - •Cross section $\propto |V_{tb}|^2$
 - Test of the unitarity of the CKM Matrix
 - Hints for existance of a 4th generation
 - A vector t' is also possible?

J. Alwall et. al., "Is $\,|\,V_{tb}\,|\,{\sim}1?$ ", Eur. Phys. J. C49 791-801 (2007).

- Test of the b-quark structure function: DGLAP evolution
 Preparation of Higgs seraches
 - same signature \rightarrow same tools can be used

Why measure single top?

Reason #4 : More work for theorists

- Extraction of V_{tb}/anomalous coupling very sensitive to theory input.
- Not so much of an issue now, but something for the precision future.
- Top mass important, e.g. 10% change in cross-section for 170→175 GeV.
- Other uncertainties: PDF (beware the bottom quark!), scale, α_s , m_b.

Calculation	Reference	PDF	cross- section	uncert.
s- NLO	e.g. Sullivan, PRD 70 (2004) 114012	CTEQ6.6M	0,42	(+0.4, -0.4)
s- resNLO*	Kidonakis, PRD 74:114012,2006.	MRST2004NNLO	0,52	(+0.03, -0.03)
t- 2→3 NLO	JC et al., arXiv:0903.0005	CTEQ6.6M	0,93	(+0.16, -0.18)
t- 2→2 NLO	e.g. Sullivan, PRD 70 (2004) 114012	CTEQ6.6M	0,99	(+0.12, -0.10)
t- 2→2 resNLO*	Kidonakis, PRD 74:114012,2006.	MRST2004NNLO	1,12	(+0.06, -0.06)

e.g. down by ~10% from 2004 to now

Stolen from Fabio Maltoni

Tevatron

Center-of-mass energy: $\sqrt{\hat{s}} = 1.96 \text{ TeV}$

Record Luminosity: $\mathcal{L} = 3.53 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ World Record for hadron colliders!

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

Bergische Universität Wuppertal

6

The experiments

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

Bergische Universität Wuppertal

7

Event selection / signature

И 1et electron 200 300

Both experiments have increased their acceptance !

Why is it such difficult?

Single top signal is hidden behind a huge background
→ precise estimation of the background rates
→ good model for the backgrounds

Theoretically simple processes

Top pair production Electroweak processes (WW/WZ/ZZ, Z→bb)

Rate: Theoretical cross section, Efficiencies from Monte Carlo events

$$N = \sigma \cdot \varepsilon \cdot \mathcal{L}$$

Model: Pythia Monte Carlo Alpgen+Pythia (

Alpgen+Pythia (DSD for top pair production)

The only backgrounds which can be completely described by Monte Carlo simulations.

QCD Multijet / Instrumental background

Rate:

Fit to the distribution of missing transverse energy Model: "Jetele" : jet trigger data, electromagnetic jet → electron "AntiEle": lepton trigger data EM objects, which doesn't pass all ID cuts

Physics Seminar DESY 16.06.2009

W + light flavor jets / Mistags

Rate:

Mistag matrix,

taken from jet trigger data Mistags can't be simulated with MC

Model:

Alpgen + Pythia Monte Carlo without btag btag \rightarrow thrown according to mistag matrix

W + heavy flavor jets

Rate:

Normalizing on "pretag data" → LO – NLO - factor Determiniation of the heavy flavor fractions in W+1jet events → heavy flavor K-factor

Normalizing to theory (MCFM-NLO)

Model:

Alpgen + Pythia Monte Carlo

Signal Model

 $2 \rightarrow 2$ and $2 \rightarrow 3$ processes have to be matched Rate (for a-priori sensitivity): Theoretical cross section, **Efficiencies from Monte Carlo events**

 $N = \sigma \cdot \varepsilon \cdot \mathcal{L}$

Model: MadEvent + Pythia 🚺 CompHEP + Pythia

- Matched Entries1188444

25 30 35 40

 \rightarrow both methods try to reproduce the NLO kinematics

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

45 50

p_T^{2nd b} [GeV]

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

Expected number of events

Single Top Observation – Event Yields				
	DØ 2.3 fb ⁻¹	CDF 3.2 fb ⁻¹	CDF 2.1 fb ⁻¹	
	Lepton+ <i>‡_T</i> +je	<i>⋭_т+jets / b</i> -tagged		
<i>tb</i> + <i>tqb</i> signal *1,*2	223 ± 30	191 ± 28	64 ± 10	
W+jets	2,647 ± 241	2,204 ± 542	304 ± 116 *4	
Z+jets, dibosons	340 ± 61	171 ± 15	171 ± 54	
<i>t</i> ī pairs *1,*2, *3	1,142 ± 168	686 ± 99	185 ± 30	
Multijets	300 ± 52	125 ± 50	679 ± 28 * ⁵	
Total prediction	4,652 ± 352	3,377 ± 505	1,403	
Data	4,519	3,315	1,411	

- *1 DØ's *tb+tqb* signal and $t\bar{t}$ background use m_{top} = 170 GeV (and signal $\sigma_{(N)NLO}$)
- *² CDF's *tb+tqb* signal and *tt* background use $m_{top} = 175$ GeV (and signal σ_{NLO})
- *³ DØ's analysis includes 4-jet events, so the $t\bar{t}$ yield is higher
- *4 CDF's $\not\!\!E_{\tau}$ +jets channel *W*+jets yield does not include *Wjj* where *j* = light jet
- *5 CDF's $\not\!\!\!E_{\tau}$ +jets channel Multijets yield includes *Wjj* events

Shape Fit

$$L(signal,bkg1..bkg4) = \prod_{k=1}^{B} \frac{e^{-\mu_k} \mu_k^{n_k}}{n_k!} \prod_{j=1}^{4} G(bkg_j | 1, \Delta_j)$$

Use shape fit to gain sensitivity also for the background calibration

Parts of distribution can have much better purity

Which variable is the best one?

Discriminating variables

Flavor separator:
All events contain a b-tagged jet
Only 50% contain a real btag
→ Neural network using:
L_{xy}, vertex mass, track
multiplicity, impact parameter,
semi-leptonic decay information,
etc

Discriminating variables

No single variable powerful enough.

Each variable contains useful information.

Need to combine information from many variables.

Search strategy

Search strategy

Check of input variables

Each variable in each channel has to checked in different side bands

Overview about Multivariate Analyses

High p_T lepton + MET + jets: single & double tagged W+2jet & W+3jet 2 lepton categories MET + jets: W+2 jet & W+3jet

High p_T lepton + MET + jets: single & double tagged W+2jet & W+3jet & W+4jets 2 lepton categories 2 data taking periods

Matrix Element Method

32

Idea: Compute an event probability P for signal and background hypothese

Matrix Element Method

W+Jets Cross-Check Sample

Boosted Decision Trees

Idea: Advance application of a cut based analysis using a boost algorithm

- Large number of input variables
- Cuts produces branches
- Terminal leaf calculate:

 $purity = N_S/N_S + N_B$

- Each data event is assigned the purity value of the leaf it falls into
- •Boosting: Create series of many trees by reweighting based on value of misclassification

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl 凝

Neural Networks

Idea: Combine many variables including correlations in one discriminate

Used in lepton trigger (NeuroBayes) and MET+jets analysis (TMVA)

Physics Seminar DESY 16.06.2009

Bayesian Neural Networks

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

Multivariate Likelihood Methode

Combination

Idea: Building a super-discriminate using the individual discriminates as inputs

Initial Configuration:

Using NEAT neural network ("Neuro-Evolution of Augmenting Topologies") K.O. Stanley and R.Miikulainen, Evolutionary Computation 10 (2) 99-127(2002)
candidate networks compete against each other
Automatically optimizes
network topology, weights
output histogram binning
includes systematic errors in optimization procedure

•Inputs:

- •Matrix elements
- •Boosted decision tree
- •Neural network
- •Likelihood

After evolution:

Combination

Idea: Building a super-discriminate using the individual discriminates as inputs

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

Systematic uncertainties

Even after a good agreement between simulation and observation one has to carefully asses systematics.

Consider sources that affect rate, discriminant shape, or both.

MC statistics treated as a source of systematic uncertainty in each bin independently

Systematic uncertainties

Systematic Uncertainties Ranked from Largest to Smallest Effect on Single Top Cross Section				
DØ 2.3 fb ⁻¹				
Larger terms				
<i>b</i> -ID tag-rate functions (includes shape variations)	(2.1–7.0)% (1-tag) (9.0–11.4)% (2-tags)			
Jet energy scale (includes shape variations)	(1.1–13.1)% (signal) (0.1–2.1)% (bkgd)			
W+jets heavy-flavor correction	13.7%			
Integrated luminosity 6.1%				
Jet energy resolution	n 4.0%			
Initial- and final-state radiation	(0.6–12.6)%			
<i>b</i> -jet fragmentation 2.0%				
tt pairs theory cross section	12.7%			
Lepton identification	2.5%			
Wbb/Wcc correction ratio 5%				
Primary vertex selection	1.4%			

Systematic Uncertainty	Rate	Shape
Jet Energy Scale	010%	\checkmark
Initial + Final State Radiation	015%	\checkmark
Parton Distribution Functions	23%	✓
Monte Carlo Generator	15%	
Event Detection Efficiency	09%	
Luminosity	6%	
Neural Net B-tagger		✓
Mistag Model		✓
Q ² scale in ALPGEN MC		✓
Input variable mismodeling		\checkmark
Wbb+Wcc normalization	30%	
Wc normalization	30%	
Mistag normalization	1729%	
ttbar normalization & m_{top}	23%	\checkmark

Hypothesis testing : p-value

p-value = probability of upward fluctuation of background to the data or something even more "signal-like"

$$Q = \frac{P(\text{data} \mid s + b, \hat{\theta})}{P(\text{data} \mid b, \hat{\theta})}$$

θ = nuisance parameters

Fit for W+jets scale factors. Fluctuate all nuisance parameters in pseudoexperiments

Statistical analysis

Bayesian statistical analysis: P(s | D) = P(D | s) * P(s)

Posterior gives the measured cross section and uncertainty.

Throwing background only events

 \rightarrow determination of sensitivity

Physics Seminar DESY 16.06.2009 Dominic Hirschbühl

Expected sensitivity

Discriminants normalized to prediction

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl

Expected sensitivity

Summary of individual measurements

Top mass $M_{top} = 175 \text{ GeV/c}^2$

Theory cross section $\sigma = 2.9 \pm 0.3 \text{ pb}$

Physics Seminar DESY 16.06.2009

Dominic Hirschbühl 🎉

Measurement of $|V_{tb}|$

Using cross section result measure $|V_{tb}|$ Assume Standard Model (V-A) coupling and $|V_{tb}| \gg |V_{ts}|$, $|V_{td}|$ (from BR(t \rightarrow Wb) measurements)

$$arphi |V_{tb,meas}|^2 = rac{\sigma_{meas}}{\sigma_{SM}} \cdot |V_{tb,SM}|^2$$

Separate measurement

Measure $\sigma_{\!s}$ and $\sigma_{\!t}$ separately

Interesting because s- and t-channels have different sensitivity to BSM models

Train dedicated s-channel and t-channel discriminants and fit 2D

Physics Seminar DESY 16.06.2009

Observation @

Analysis	Significance Std.Dev. (σ)	Sensitivity Std.Dev. (σ)
NN	3.5	5.2
ME	4.3	4.9
LF	2.4	4.0
LFS	2.0	1.1
BDT	3.5	5.2
SD	4.8	>5.9
MJ	2.1	1.4
Combined	5.0	>5.9

A golden event

Expected sensitivity

Physics Seminar DESY 16.06.2009

Summary of individual measurements


```
Top mass
M_{top} = 170 \text{ GeV/c}^2
```

Theory cross section $\sigma = 3.5 \pm 0.2 \text{ pb}$

Observation @

DØ 2.3 fb ⁻¹ Single Top Results				
Single Top		Significance		
Analysis Method	Cross Section	Expected	Measured	
Boosted Decision Trees	3.74 ^{+0.95} _{-0.79} pb	4.3 σ	4.6 σ	
Bayesian Neural Networks	4.70 ^{+1.18} _{-0.93} pb	4.1 σ	5.4 σ	
Matrix Elements	$4.30 \ ^{+0.99}_{-1.20} \ { m pb}$	4.1 σ	4.9 σ	
Combination	$3.94\pm0.88~\text{pb}$	4.5 σ	5.0 σ	

Measurement of $|V_{tb}|$

Using cross section result measure $|V_{tb}|$ Assume Standard Model (V-A) coupling $f_1^R = f_2^L = f_2^R = 0$ and $|V_{tb}| >> |V_{ts}|$, $|V_{td}|$

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}}_{tb} \left\{ \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right] - \frac{i\sigma^{\mu\nu}}{M_W} \left(p_t - p_b \right)_{\nu} \left[f_2^L P_L + f_2^R P_R \right] \right\}$$

Physics Seminar DESY 16.06.2009

Tevatron summary

Single Top Cross Section	Signal Significance Expected Observed		CKM Matrix Element V _{tb}	
March 2009	DØ (2.3 fb⁻¹) arXiv:0903.0850 ($m_{top} = 170 \text{ GeV}$)			
3.94 ± 0.88 pb	4.5 σ	5.0 σ	$ig V_{tb} f_1^L ig = 1.07 \pm 0.12$ $ig V_{tb} ig > 0.78$ at 95% CL	
March 2009 CDF (3.2 fb ⁻¹) arXiv:0903.0885 (m _{top} = 175 GeV)				
2.3 ^{+0.6} _{-0.5} pb	>5.9 σ	5.0 σ	$ig V_{tb} f_1^L ig = 0.91 \pm 0.13$ $ig V_{tb} ig > 0.71$ at 95% CL	

After long journey ...

58

0

36

THE REAL

A REAL PROPERTY AND A REAL PROPERTY AND A IN FREE ALL AND A

THE R. LEWIS CO.

1000 CALL A LABOR DO AND F_{-}

123123

photo: Reidar Hahn; artwork: Jan Lueck

Why it is such difficult?

Expected events for 3.2 / 2.1 $\rm fb^{-1}$

►~30%

 $\begin{array}{l} \text{MET + high } p_{\text{T}} \text{ lepton + 2 jets } 3.2 \text{ fb}^{\text{-1}} \\ \text{(single + double SECVTX tag)} \end{array}$

			_
<i>s</i> -channel	58.1	8.4	
<i>t</i> -channel	87.6	13.0	
Single top	145.7	21.4	
tt	204.1	29.6	
Dibosons	88.3	9.1	
Z + jets	36.5	5.6	
W + bb	656.9	198.0	1
W + cc	292.2	90.1	
W + cj	250.4	77.2	J
W + light flavor	501.3	69.6	
Non-W	89.6	35.8	
Total background	2119.3	350.9	
Total prediction	2265.0	375.4	
Observed	222	29	

 $MET+ \ge 2 \text{ jets } 2.1 \text{ fb}^{-1}$ (single + double SECVTX tag, SECVTX + JetProb.)

<i>s</i> -channel	29.6	2.7
<i>t</i> -channel	34.5	6.1
Single top	64.1	8.8
tt	184.5	30.2
Diboson	42.1	6.7
W + HF	304.4	115.5
QCD multijet	679.4	27.9
Total background	1339.9	170
Total prediction	1404	172
Observed	14	11

Event selection for 2.3 fb⁻¹

Event Yields in 2.3 fb ⁻¹ of DØ Data					
Electron + muon, 1 tag + 2 tags combined					
Source	2 jets 3 jets 4 jets				
s-channel tb	62 ± 9	24 ± 4	7 ± 2		
t-channel tqb	77 ± 10	39 ± 6	14 ± 3		
W+bb	678 ± 104	254 ± 39	73 ± 11		
W+cc	303 ± 48	130 ± 21	42 ± 7		
W+cj	435 ± 27	113 ± 7	24 ± 2		
W+jj	413 ± 26	140 ± 9	41 ± 3		
Z+jets	141 ± 33	54 ± 14	17 ± 5		
Dibosons	89 ± 11	32 ± 5	9 ± 2		
$t\bar{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6		
$t\bar{t} \rightarrow \ell + jets$	72 ± 13	331 ± 51	452 ± 66		
Multijets	196 ± 50	73 ± 17	30 ± 6		
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80		
Data	2,579	1,216	724		

$$\mathcal{L}(\beta_1, \dots, \beta_5; \delta_1, \dots, \delta_{10}) = \underbrace{\prod_{k=1}^{B} \frac{e^{-\mu_k} \cdot \mu_k^{n_k}}{n_k!}}_{Poisson \ term} \cdot \underbrace{\prod_{j=2}^{5} G(\beta_j | 1, \Delta_j)}_{Gauss \ constraints} \cdot \underbrace{\prod_{i=1}^{10} G(\delta_i, 0, 1)}_{Systematics}$$

$$\mu_k = \sum_{j=1}^5 \beta_j \quad \cdot \quad \underbrace{\left\{\prod_{i=1}^{10} \left[1 + |\delta_i| \cdot (\epsilon_{ji+} H(\delta_i) + \epsilon_{ji-} H(-\delta_i))\right]\right\}}_{i=1}$$

Normalization Uncertainty

$$\underbrace{\underbrace{\widehat{A_{jk}}}_{Shape P.}}_{Shape P.} \cdot \underbrace{\left\{ \prod_{i=1}^{10} \left(1 + |\delta_i| \cdot \left(\kappa_{jik+} H(\delta_i) + \kappa_{jik-} H(-\delta_i) \right) \right) \right\}}_{Shape Uncertainty}$$

