

SUSY models with extended gauge symmetries in the light of m_h =125 GeV

Werner Porod

Universität Würzburg

- $SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L} \text{ model}$
 - model realisations: GMSB, SUGRA inspired, NUHM
 - Higgs physics
 - **9** ν physics @ LHC
 - changes in SUSY phenomenology
- $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L} \text{ model}$
 - \square Z' physics
 - I e arches at 14 TeV

 $M_H = 125.5 \pm 0.2_{\rm stat} \pm 0.6_{\rm sys} \,\, {\rm GeV}$

 $M_H = 125.7 \pm 0.3_{\text{stat}} \pm 0.3_{\text{sys}} \text{ GeV}$

for latest details see e.g. talks by G. Landsberg and F. Cerutti @ EPS-HEP, Stockholm, 2013

ATLAS, arXiv:1307.1427

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

CMS, CMS-PAS-HIG-13-005

for latest details see e.g. talk F. Cerutti @ EPS-HEP, Stockholm, 2013

UNIVERSITÄT WÜRZBURG Higgs in the MSSM scenarios; nut-shell again

SM: potentially meta-stable (G. Degrassi *et al.*, arXiv:1205.6497), hierarchy problem \Rightarrow supersymmetry (SUSY)

Minimal SUSY (MSSM), tree level: $m_h \leq m_Z \Rightarrow$ need for large radiative corrections

- GMSB: $m_{\tilde{t}_1} \gtrsim 6$ TeV,
 M. A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi, arXiv:1204.2856
- general MSSM: corrections maximised for $|(A_t \mu/\tan\beta)/\sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}}| \simeq 2$, M. S. Carena, H. E. Haber, S. Heinemeyer, W. Hollik, C. E. M. Wagner, G. Weiglein, hep-ph/0001002
- CMSSM, NUHM models: |A₀| ~ 2m₀,
 H. Baer, V. Barger and A. Mustafayev, arXiv:1112.3017; M. Kadastik *et al.*, arXiv:1112.3647; O. Buchmueller *et al.*, arXiv:1112.3564; J. Cao, Z. Heng, D. Li, J. M. Yang, arXiv:1112.4391; L. Aparicio, D. G. Cerdeno, L. E. Ibanez, arXiv:1202.0822; J. Ellis, K. A. Olive, arXiv:1202.3262; ...
- general high scale models: $A_0 \simeq -(1-3) \max(M_{1/2}, m_{Q_3,GUT}, m_{U_3,GUT})$ among other cases, details in F. Brümmer, S. Kraml and S. Kulkarni, arXiv:1204.5977

However: several cases excluded by charge/color breaking minima,

E. Camargo, B. O'Leary, W.P., F. Staub, in preparation

Origin of *R*-parity $R_P = (-1)^{2s+3(B-L)}$

 $\Rightarrow SO(10) \rightarrow SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ $\rightarrow SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$ $\cong SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_\chi$ $\text{ or } E(8) \times E(8) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

Neutrino masses

Julius-Maximilians-

UNIVERSITÄT

WURZBURG

B-L anomaly free $\Rightarrow \nu_R$ usual seesaw, inverse seesaw

SM-like Higgs boson at 125 GeV in SUSY: additional D-term contributions to m_h⁰

 $U(1)_a imes U(1)_b$ models allow for

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

(B. Holdom, PLB **166**m0 = 250 (1986) 196)

$$\mathcal{L} \supset -\chi_{ab} \hat{F}^{a,\mu
u} \hat{F}^{b}_{\mu
u}$$

Gauge kinetic mixing

$$\Rightarrow \qquad \gamma_{ab} = \frac{1}{16\pi^2} \operatorname{Tr}(Q_a Q_b)$$

equivalent

$$D_{\mu} = \partial_{\mu} - i(Q_{a}, Q_{b}) \underbrace{\left(\begin{array}{cc}g_{aa} & g_{ab}\\g_{ba} & g_{bb}\end{array}\right)}_{NG} \left(\begin{array}{c}A_{\mu}^{a}\\A_{\mu}^{b}\end{array}\right)$$

both U(1) unbroken \Rightarrow chose basis with e.g. $g_{ba} = 0$

affects also RGE running of soft SUSY parameters: R. Fonseca, M. Malinsky, W.P., F. Staub, NPB **854** (2012) 28

$SU(3)_C \times SU(2)_L \times U(1)_R \times U(1)_{B-L}$ model

	Superfield	$SU(3)_c \times SU(2)_L \times U(1)_R \times U(1)_{B-L}/$	Generations
		$SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_\chi$	
	\hat{Q}	$({f 3},{f 2},0,+{1\over 6})$ / $({f 3},{f 2},+{1\over 6},+{1\over 4})$	3
	$\hat{d^c}$	$(\overline{f 3}, {f 1}, +rac{1}{2}, -rac{1}{6})$ / $(\overline{f 3}, {f 1}, +rac{1}{3}, -rac{3}{4})$	3
er	$\hat{u^c}$	$(\overline{f 3}, {f 1}, -rac{1}{2}, -rac{1}{6})$ / $(\overline{f 3}, {f 1}, -rac{2}{3}, rac{1}{4})$	3
Aatt	\hat{L}	$({f 1},{f 2},0,-{1\over 2})$ / $({f 1},{f 2},-{1\over 2},-{3\over 4})$	3
2	$\hat{e^c}$	$({f 1},{f 1},+{1\over 2},+{1\over 2})$ / $({f 1},{f 1},+1,+{1\over 4})$	3
	$\hat{ u^c}$	$({f 1},{f 1},-{1\over 2},+{1\over 2})$ / $({f 1},{f 1},0,+{5\over 4})$	3
	\hat{S}	$\left(1,1,0,0 ight)$ / $\left(1,1,0,0 ight)$	3
	\hat{H}_u	$({f 1},{f 2},+{1\over 2},0)$ / $({f 1},{f 2},+{1\over 2},-{1\over 2})$	1
Higgs	\hat{H}_d	$({f 1},{f 2},-{1\over 2},0)$ / $({f 1},{f 2},-{1\over 2},+{1\over 2})$	1
	$\hat{\chi}_R$	$({f 1},{f 1},+{1\over 2},-{1\over 2})$ / $({f 1},{f 1},0,-{5\over 4})$	1
	$\hat{ar{\chi}}_R$	$({f 1},{f 1},-{1\over 2},+{1\over 2})$ / $({f 1},{f 1},0,+{5\over 4})$	1

 $Y = T_R + B - L \text{ and } Q = T_L^3 + Y.$

 $W = Y_u \hat{u^c} \hat{Q} \hat{H}_u - Y_d \hat{d^c} \hat{Q} \hat{H}_d + Y_\nu \hat{\nu^c} \hat{L} \hat{H}_u - Y_e \hat{e^c} \hat{L} \hat{H}_d + \mu \hat{H}_u \hat{H}_d$

 $-\mu_R\hat{\bar{\chi}}_R\hat{\chi}_R + Y_s\hat{\nu^c}\hat{\chi}_R\hat{S} + \mu_S\hat{S}\hat{S}$

Julius-Maximilians-

UNIVERSITÄT

WURZBURG

M. Hirsch et al., arXiv:1110.3037

GUT embedding: $g_{BL} = g_R = g_2 \Rightarrow M_{GUT}$, set $g_{RBL} = g_{BLR} = 0$ at M_{GUT}

$$\gamma_{ab} = \frac{1}{16\pi^2} \begin{pmatrix} \frac{15}{2} & -\sqrt{\frac{3}{8}} \\ -\sqrt{\frac{3}{8}} & \frac{27}{4} \end{pmatrix}$$

soft breaking parameters:

$$\begin{split} m_0^2 \mathbf{1}_3 &= m_D^2 = m_U^2 = m_Q^2 = m_E^2 = m_L^2 = m_{\nu^c}^2 = m_S^2 \\ M_{1/2} &= M_{BL} = M_R = M_2 = M_3 \ , \ M_{BLR} = 0 \\ T_i &= A_0 Y_i, \qquad i = e, d, u, \nu, s \end{split}$$

Higgs sector: $m_0 = m_{H_d} = m_{H_u}$ and either

- 1. $m_0 = m_{\chi_R} = m_{\bar{\chi}_R}$ at M_{GUT} or
- 2. m_{A_R} , μ' at M_{SUSY} as input

Use SO(10) 10-plets as messengers:

	$SU(3)_C \times SU(2)_L$	$U(1)_R \times U(1)_{B-L}$	$U(1)_Y \times U(1)_\chi$
$\hat{\Phi}_1$	(1 , 2)	$(rac{1}{2},0)$	$(\tfrac{1}{2},-\tfrac{1}{2})$
$\hat{\bar{\Phi}}_1$	(1 , 2)	$(-rac{1}{2},0)$	$(-\frac{1}{2},\frac{1}{2})$
$\hat{\Phi}_2$	(3 , 1)	$(0,-rac{1}{3})$	$(-\tfrac{1}{3},-\tfrac{1}{2})$
$\hat{\bar{\Phi}}_2$	$(ar{f 3}, f 1)$	$(0, \frac{1}{3})$	$(rac{1}{3},rac{1}{2})$

$$\begin{split} M_{A \neq Abelian} &= \frac{g_A^2}{16\pi^2} n \Lambda g(x) \,, \qquad \Lambda = F/M \,, x = |\Lambda/M| \,, \\ M_{kl=Abelian} &= \frac{1}{16\pi^2} n g(x) \Lambda \Big(\sum_i G^T N Q_i Q_i^T N G \Big)_{kl} \,, \\ m_k^2 &= \frac{2}{(16\pi^2)^2} n \Lambda^2 f(x) \Big(\sum_{A \neq Abelian} C_A(k) g_A^4 + \sum_i (Q_k^T N G G^T N Q_i)^2 \Big) \,, \\ m_S^2 &\simeq \frac{Y_S^2}{16\pi^2} \Big(m_{\chi_R}^2 + m_{\nu^c}^2 \Big) \,. \end{split}$$

M.E. Krauss, W.P., F. Staub, arXiv:1304.0769

basis (W^0, B_Y, B_χ)

$$\begin{split} M_{VV}^2 &= \frac{1}{4} \begin{pmatrix} g_2^2 v^2 & -g_2 g' v^2 & g_2 \tilde{g}_{\chi} v^2 \\ -g_2 g' v^2 & g'^2 v^2 & -g' \tilde{g}_{\chi} v^2 \\ g_2 \tilde{g}_{\chi} v^2 & -g' \tilde{g}_{\chi} v^2 & \frac{25}{4} g_{\chi}^2 v_R^2 + \tilde{g}_{\chi}^2 v^2 \end{pmatrix} \\ \tilde{g}_{\chi} &= g_{\chi} - g_{Y\chi} \\ v^2 &= v_d^2 + v_u^2 , v_R^2 = v_{\chi_R}^2 + v_{\bar{\chi}_R}^2 \end{split}$$

expanding in v^2/v_R^2

$$m_{Z}^{2} \simeq \frac{1}{4} \left(g'^{2} + g_{2}^{2} \right) v^{2} \left(1 - \frac{4}{25} \left(1 - \frac{g_{Y\chi}}{g_{\chi}} \right)^{2} \frac{v^{2}}{v_{R}^{2}} \right)$$
$$m_{Z'}^{2} \simeq \left(\frac{5}{4} g_{\chi} v_{R} \right)^{2}$$

M. Hirsch, W.P., L. Reichert, F. Staub, arXiv:1206:3516; M.E. Krauss, W.P., F. Staub, arXiv:1304.0769

$$\chi_R = \frac{1}{\sqrt{2}} \left(\sigma_R + i\varphi_R + v_{\chi_R} \right) , \ \bar{\chi}_R = \frac{1}{\sqrt{2}} \left(\bar{\sigma}_R + i\bar{\varphi}_R + v_{\bar{\chi}_R} \right)$$
$$H_d^0 = \frac{1}{\sqrt{2}} \left(\sigma_d + i\varphi_d + v_d \right) , \quad H_u^0 = \frac{1}{\sqrt{2}} \left(\sigma_u + i\varphi_u + v_u \right)$$

pseudo scalars, basis $(\varphi_d, \varphi_u, \bar{\varphi}_R, \varphi_R)$

$$\begin{split} M_{AA}^2 &= \begin{pmatrix} M_{AA,L}^2 & 0 \\ 0 & M_{AA,R}^2 \end{pmatrix} \\ M_{AA,L}^2 &= B_{\mu} \begin{pmatrix} \tan \beta & 1 \\ 1 & \cot \beta \end{pmatrix} \quad , \quad M_{AA,R}^2 = B_{\mu R} \begin{pmatrix} \tan \beta_R & 1 \\ 1 & \cot \beta_R \end{pmatrix} \end{split}$$

 $\tan\beta=v_u/v_d$ and $\tan\beta_R=v_{\chi_R}/v_{\bar{\chi}_R}$ two physical states

$$m_A^2 = B_\mu(\tan\beta + \cot\beta), \qquad m_{A_R}^2 = B_{\mu_R}(\tan\beta_R + \cot\beta_R)$$

independent of gauge kinetic mixing!

UNIVERSITÄT WÜRZBURG Higgs sector, II

Julius-Maximilians-

$$\begin{split} M_{hh}^{2} &= \begin{pmatrix} m_{LL}^{2} & m_{LR}^{2} \\ m_{LR}^{2,T} & m_{RR}^{2} \end{pmatrix} \\ m_{LL}^{2} &= \begin{pmatrix} g_{\Sigma}^{2}v^{2}c_{\beta}^{2} + m_{A}^{2}s_{\beta}^{2} & -\frac{1}{2}\left(m_{A}^{2} + g_{\Sigma}^{2}v^{2}\right)s_{2\beta} \\ -\frac{1}{2}\left(m_{A}^{2} + g_{\Sigma}^{2}v^{2}\right)s_{2\beta} & g_{\Sigma}^{2}v^{2}s_{\beta}^{2} + m_{A}^{2}c_{\beta}^{2} \end{pmatrix} , \\ m_{LR}^{2} &= \frac{5}{8}g_{\chi}\tilde{g}_{\chi}vv_{R} \begin{pmatrix} c_{\beta}c_{\beta_{R}} & -c_{\beta}s_{\beta_{R}} \\ -s_{\beta}c_{\beta_{R}} & s_{\beta}s_{\beta_{R}} \end{pmatrix} , \\ m_{RR}^{2} &= \begin{pmatrix} g_{Z_{R}}^{2}v_{R}^{2}c_{\beta_{R}}^{2} + m_{A_{R}}^{2}s_{\beta_{R}}^{2} & -\frac{1}{2}\left(m_{A_{R}}^{2} + g_{\Sigma_{R}}^{2}v_{R}^{2}\right)s_{2\beta_{R}} \\ -\frac{1}{2}\left(m_{A_{R}}^{2} + g_{\Sigma_{R}}^{2}v_{R}^{2}\right)s_{2\beta_{R}} & g_{\Sigma_{R}}^{2}v_{R}^{2}s_{\beta_{R}}^{2} + m_{A_{R}}^{2}c_{\beta_{R}}^{2} \end{pmatrix} \\ v_{R}^{2} &= v_{\chi_{R}}^{2} + v_{\chi_{R}}^{2} , v^{2} = v_{d}^{2} + v_{u}^{2} , s_{x} = \sin(x) , c_{x} = \cos(x) \\ g_{\Sigma}^{2} &= \frac{1}{4}(g_{2}^{2} + g'^{2} + \tilde{g}_{\chi}^{2}) , g_{\Sigma_{R}}^{2} = \frac{25}{16}g_{\chi}^{2} , \tilde{g}_{\chi} = g_{\chi} - g_{Y\chi} \end{split}$$

 \Rightarrow new D-term contributions at tree-level: $m^2_{h^0,tree} \leq m^2_Z + rac{1}{4} \tilde{g}^2_\chi v^2$

H.E. Haber, M. Sher, PRD 35 (1987) 2206; M. Drees, PRD 35 (1987) 2910; M. Cvetic et al., PRD 56 (1997) 2861; E. Ma, arXiv:1108.4029; M. Hirsch et al., arXiv:1110.3037, arXiv:1206:3516

$$\begin{split} n &= 1, \ \Lambda = 5 \cdot 10^5 \ \text{GeV}, \ M = 10^{11} \ \text{GeV}, \ \tan\beta = 30, \ \text{sign}(\mu_R) = -, \ diag(Y_S) = \\ (0.7, 0.6, 0.6), \ Y_{\nu}^{ii} &= 0.01, \ v_R = 7 \ \text{TeV} \end{split}$$

M.E. Krauss, W.P., F. Staub, arXiv:1304.0769

scan over: $1 \le n \le 4$, $10^5 \le M \le 10^{12}$ GeV, $10^5 \le \sqrt{n}\Lambda \le 10^6$) GeV, $1.5 \le \tan \beta \le 40$, $1 < \tan \beta_R \le 1.15$, sign $(\mu_R) \pm 1$, sign $(\mu) = 1$, $6.5 \le v_R \le 10$ TeV, $0.01 \le Y_S^{ii} \le 0.8$, $10^{-5} \le Y_{\nu}^{ii} \le 0.5$ blue points: $h_1 \simeq h^0$, green points: $h_2 \simeq h^0$

$$R_{h\to\gamma\gamma} = \frac{[\sigma(pp\to h) \times BR(h\to\gamma\gamma)]_{BLR}}{[\sigma(pp\to h) \times BR(h\to\gamma\gamma)]_{SM}}.$$

M.E. Krauss, W.P., F. Staub, arXiv:1304.0769

Higgs sector V

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

 $m_0 = 250 \text{ GeV}, M_{1/2} = 800 \text{ GeV}, \tan \beta = 10, A_0 = 0$ $v_R = 6000 \text{ GeV}, \tan \beta_R = 0.94, m_{A_R} = 2350 \text{ GeV}, \mu_R = -800 \text{ GeV}$ including complete 1-loop + 2-loop in the MSSM part

UNIVERSITÄT WÜRZBURG

basis $(\lambda_Y,\lambda_{W^3},\tilde{h}^0_d,\tilde{h}^0_u,\lambda_\chi,\tilde{\bar{\chi}}_R,\tilde{\chi}_R)$

 $M_{\tilde{\chi}^0} =$

$$\begin{pmatrix} M_1 & 0 & -\frac{g'v_d}{2} & \frac{g'v_u}{2} & \frac{M_Y\chi}{2} & 0 & 0 \\ 0 & M_2 & \frac{g_2v_d}{2} & -\frac{g_2v_u}{2} & 0 & 0 & 0 \\ -\frac{g'v_d}{2} & \frac{g_2v_d}{2} & 0 & -\mu & \frac{(g_\chi - g_Y\chi)v_d}{2} & 0 & 0 \\ \frac{g'v_u}{2} & -\frac{g_2v_u}{2} & -\mu & 0 & -\frac{(g_\chi - g_Y\chi)v_u}{2} & 0 & 0 \\ \frac{M_Y\chi}{2} & 0 & \frac{(g_\chi - g_Y\chi)v_d}{2} & -\frac{(g_\chi - g_Y\chi)v_u}{2} & M_\chi & \frac{5g_\chi v_{\bar{\chi}R}}{4} & -\frac{5g_\chi v_{\chi R}}{4} \\ 0 & 0 & 0 & 0 & \frac{5g_\chi v_{\bar{\chi}R}}{4} & 0 & -\mu_R \\ 0 & 0 & 0 & 0 & 0 & -\frac{5g_\chi v_{\chi R}}{4} & -\mu_R & 0 \end{pmatrix}$$

neglecting the mixing between the two sectors and setting $\tan \beta_R = 1$

$$m_i: \ \mu_R, \ \ \frac{1}{2}\left(M_{\chi} + \mu_R \pm \sqrt{\frac{1}{4}m_{Z'}^2 + (M_{\chi} - \mu_R)^2}\right)$$

Julius-Maximilians-

n = 1, $\Lambda = 3.8 \cdot 10^5$ GeV, $M = 9 \cdot 10^{11}$ GeV, $\tan \beta = 30 v_R = 6.7$ GeV, $\tan \beta_R$ varied

 $h \tilde{\chi}_1^0$

1200

1400

$$M_{\nu} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} v_{u} Y_{\nu}^{T} & 0 \\ \frac{1}{\sqrt{2}} v_{u} Y_{\nu} & 0 & \frac{1}{\sqrt{2}} v_{\chi_{R}} Y_{s} \\ 0 & \frac{1}{\sqrt{2}} v_{\chi_{R}} Y_{s} & \mu_{S} \end{pmatrix}^{\operatorname{1gen},\mu_{S}=0} m_{\nu} = \begin{pmatrix} 0 \\ -\sqrt{|Y_{\nu}|^{2} v_{u}^{2} + |Y_{s}|^{2} v_{\chi_{R}}^{2}} \\ \sqrt{|Y_{\nu}|^{2} v_{u}^{2} + |Y_{s}|^{2} v_{\chi_{R}}^{2}} \end{pmatrix}$$

setting $\mu_S = 0$ and $B_{\mu_S} = 0$

$$M_{\tilde{\nu}}^{2} = \begin{pmatrix} m_{L}^{2} + \frac{v_{u}^{2}}{2} Y_{\nu}^{\dagger} Y_{\nu} + D_{L} & \frac{1}{\sqrt{2}} v_{u} (T_{\nu}^{\dagger} - Y_{\nu} \cot \beta \mu^{*}) & m_{\nu}^{2} + \frac{v_{u}^{2}}{2} Y_{\nu} Y_{\nu}^{\dagger} \\ \frac{1}{\sqrt{2}} v_{u} (T_{\nu} - Y_{\nu} \cot \beta \mu^{*}) & m_{\nu}^{2} + \frac{v_{u}^{2}}{2} Y_{\nu} Y_{\nu}^{\dagger} \\ \frac{1}{\sqrt{2}} v_{u} (T_{\nu} - Y_{\nu} \cot \beta \mu^{*}) & m_{\nu}^{2} + \frac{v_{u}^{2}}{2} Y_{\nu} Y_{\nu}^{\dagger} \end{pmatrix}$$

$$\begin{pmatrix} m_L^2 + \frac{v_u^2}{2} Y_\nu^{\dagger} Y_\nu + D_L & \frac{1}{\sqrt{2}} v_u (T_\nu^{\dagger} - Y_\nu^{\dagger} \cot \beta \mu) & \frac{1}{2} v_u v_{\chi_R} Y_\nu^{\dagger} Y_s \\ \frac{1}{\sqrt{2}} v_u (T_\nu - Y_\nu \cot \beta \mu^*) & m_\nu^2 + \frac{v_u^2}{2} Y_\nu Y_\nu^{\dagger} + \frac{v_{\chi_R}^2}{2} Y_s^{\dagger} Y_s + D_R & \frac{1}{\sqrt{2}} v_{\chi_R} (T_s - Y_s \cot \beta_R \mu_R^*) \\ \frac{1}{2} v_u v_{\chi_R} Y_s^{\dagger} Y_\nu & \frac{1}{\sqrt{2}} v_{\chi_R} (T_s^{\dagger} - Y_s^{\dagger} \cot \beta_R \mu_R) & m_S^2 + \frac{v_{\chi_R}^2}{2} Y_s^{\dagger} Y_s \end{pmatrix}$$

$$D_L = \frac{1}{32} \Big(2 \Big(-3g_\chi^2 + g_\chi g_{Y\chi} + 2(g_2^2 + g'^2 + g_{Y\chi}^2) \Big) v^2 c_{2\beta} - 5g_\chi (3g_\chi + 2g_{Y\chi}) v_R^2 c_{2\beta_R} \Big) \mathbf{1}$$

$$D_R = \frac{5g_\chi}{32} \Big(2(g_\chi - g_{Y\chi}) v^2 c_{2\beta} + 5g_\chi v_R^2 c_{2\beta_R} \Big) \mathbf{1}$$

Ň

$$M_{\tilde{l}}^{2} = \begin{pmatrix} M_{\tilde{L}}^{2} + D_{L}' + m_{l}^{2} & \frac{1}{\sqrt{2}} \left(v_{d} T_{l} - \mu Y_{l} v_{u} \right) \\ \frac{1}{\sqrt{2}} \left(v_{d} T_{l} - \mu Y_{l} v_{u} \right) & M_{\tilde{E}}^{2} + D_{R}' + m_{l}^{2} \end{pmatrix},$$

 $D_L = \left(\frac{1}{8}(g'^2 - g_2^2) - \frac{3}{16}g_\chi^2\right)v^2c_{2\beta} - \frac{15}{32}g_\chi^2v_R^2c_{2\beta_R} \text{ and } D_R = \left(\frac{1}{16}g_\chi^2 - \frac{1}{4}g'^2\right)v^2c_{2\beta} + \frac{5}{32}g_\chi^2v_R^2c_{2\beta_R}$

neglecting gauge kinetic effects; similarly for squarks

Sfermions

Ulius-Maximilians-

RZBURG

$$\begin{split} m_0 &= 100 \; \text{GeV}, \, m_{1/2} = 700 \; \text{GeV}, \, A_0 = 0, \, \tan\beta = 10, \, \mu > 0 \\ \tan\beta_R &= 0.94, \, m_{A_R} = 2 \; \text{TeV}, \, \mu_R = -800 \; \text{GeV} \end{split}$$

Benchmark points

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

	BLRSP1	BLRSP2	BLRSP3	BLRSP4	BLRSP5
m_0 [GeV]	470	1000	120	165	500
$M_{1/2} \ [{ m GeV}]$	700	1000	780	700	850
aneta	20	10	10	10	10
A_0	0	-3000	-300	0	-600
v_R [GeV]	4700	6000	6000	5400	5000
$ aneta_R$	1.05	1.025	0.85	1.06	1.023
μ_R [GeV]	-1650	-780	-1270	260	(-905)
m_{A_R} [GeV]	4800	7600	800	2350	(1482)
$Y_{\nu,11} = Y_{\nu,22} = Y_{\nu,33}$	0.04	0.1	0.1	0.1	0.1
$Y_{s,11}$	0.04	0.042	0.3	0.3	0.3
$Y_{s,22} = Y_{s,33}$	0.05	0.042	0.3	0.3	0.3

BLRSP1-BLRSP4: μ_R and m_{A_R} are input BLRSP5: GUT version

UNIVERSITÄT WÜRZBURG Spectra (in GeV)

	BLRSP1	BLRSP2	BLRSP3	BLRSP4	BLRSP5	
$m_{ ilde{ u}_1}$	105.0	797.	91.6	542.	921.	
$m_{\tilde{ u}_{2/3}}$	215.0	797.	92.6	542.	924.	
$m_{ ilde{ u}_4}$	604.	1120.	253.	585.	940.	
$m_{ ilde{e}_1}$	524.	1014.	255.	263.	693.	
$m_{ ilde{e}_{2,3}}$	557.	1055.	266.	271.	706.	
$m_{ ilde{e}_4}$	832.	1222.	448.	592.	933.	
$m_{ ilde{u}_1}$	1436.	1185.	1247.	1111.	1545.	
$m_{ ilde{u}_2}$	1721.	1852.	1527.	1361.	1905.	
$m_{ ilde{u}_{3,4}}$	1799.	2155.	1566.	1392.	2008.	
$m_{ ilde{u}_{5,6}}$	1871.	2227.	1634.	1449.	2089.	
$m_{\chi^0_1}$	367.	417.	313.	259. $ ilde{h}_R$	412.	
$m_{\chi^0_2}$	718.	780. $ ilde{h}_R$	615.	280.	739. ${ ilde h}_R$	
$m_{\chi^0_3}$	1047.	818.	1087.	549.	804.	
$m_{\chi^0_4}$	1054.	1866.	1093.	845.	1288.	
$m_{\chi_5^0}$	1348. (\tilde{B}_{\perp})	1866.	1232. (\tilde{B}_{\perp})	857.	1294.	
m_{χ^0}	1802. $ ilde{h}_R$	2018. $(ilde{B}_{\perp})$	1811. (\tilde{B}_{\perp})	1639. (\tilde{B}_{\perp})	1688. (\tilde{B}_{\perp})	
×0		l		l	l	

CMSSM, GMSB: $\tilde{q}_R \rightarrow q \tilde{\chi}_1^0$

here: $\tilde{\nu}$ LSP, $m_{\nu_h} \simeq 100~{\rm GeV}$

$$\begin{split} \tilde{q}_R & \to \quad q \tilde{\chi}_1^0 \to q \nu_k \tilde{\nu}_1 \to q \nu_j Z \tilde{\nu}_1 \\ \tilde{q}_R & \to \quad q \tilde{\chi}_1^0 \to q \nu_k \tilde{\nu}_1 \to q l^{\pm} W^{\mp} \tilde{\nu}_1 \\ \tilde{q}_R & \to \quad q \tilde{\chi}_1^0 \to q \nu_k \tilde{\nu}_3 \to q l^{\pm} W^{\mp} l'^+ l'^- \tilde{\nu}_1 \\ \tilde{d}_R & \to \quad d \tilde{\chi}_5^0 \to d l^{\pm} \tilde{l}_i^{\mp} \to d l^{\pm} l^{\mp} \tilde{\chi}_1^0 \to d l^{\pm} l^{\mp} \nu_k \tilde{\nu}_1 \to d l^{\pm} l^{\mp} l'^{\pm} W^{\mp} \tilde{\nu}_1 \end{split}$$

with $k \in \{4, 5, 6, 7, 8, 9\}$ and $j \in \{1, 2, 3\}$.

 $BR(ilde{d}_R
ightarrow d ilde{\chi}_5^0) \simeq 0.2 \Rightarrow$ softer jets

BLRSP3: usual cascades similar to CMSSM, but

$$\begin{split} \tilde{\chi}_{1}^{0} & \to \quad l^{\pm} \tilde{l}^{\mp} \to l^{\pm} W^{\mp} \tilde{\nu}_{1} \\ \tilde{\chi}_{1}^{0} & \to \quad l^{\pm} \tilde{l}^{\mp} \to l^{\pm} W^{\mp} \tilde{\nu}_{2,3} \to l^{\pm} W^{\mp} f \bar{f} \tilde{\nu}_{1} \\ \tilde{\chi}_{1}^{0} & \to \quad \nu_{j} \tilde{\nu}_{2,3} \to \nu_{1,2,3} f \bar{f} \tilde{\nu}_{1} \\ \tilde{\chi}_{1}^{0} & \to \quad \nu_{j} \tilde{\nu}_{1} \\ \tilde{\chi}_{1}^{0} & \to \quad \nu_{j} \tilde{\nu}_{k} \to \nu_{j} h_{1,2} \tilde{\nu}_{1} \\ \tilde{\chi}_{1}^{0} & \to \quad \nu_{j} \tilde{\nu}_{k} \to \nu_{j} h_{1,2} f \bar{f} \tilde{\nu}_{1} \end{split}$$

with j = 1, 2, 3 and k = 4, 5, 6

 \Rightarrow enhancement of multiplicities compared to standard case, e.g.

$$\tilde{d}_R \to d\tilde{\chi}^0_1 \to dX$$

BLRSP4: similar to NMSSM with singlino LSP

$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ model

Superfield	Generations	$U(1)_Y \times SU(2)_L \times SU(3)_C \times U(1)_{B-L}$
\hat{Q}	3	$(rac{1}{6}, oldsymbol{2}, oldsymbol{3}, rac{1}{6})$
\hat{D}	3	$(rac{1}{3}, 1, \overline{3}, -rac{1}{6})$
\hat{U}	3	$(-rac{2}{3}, 1, \overline{3}, -rac{1}{6})$
\hat{L}	3	$(-rac{1}{2},oldsymbol{2},oldsymbol{1},-rac{1}{2})$
\hat{E}	3	$(1, 1, 1, \frac{1}{2})$
$\hat{ u}$	3	$(0,1,1,rac{1}{2})$
\hat{H}_d	1	$(-rac{1}{2},oldsymbol{2},oldsymbol{1},0)$
\hat{H}_u	1	$(rac{1}{2},oldsymbol{2},oldsymbol{1},0)$
$\hat{\eta}$	1	(0, 1 , 1 , -1)
$\hat{ar{\eta}}$	1	(0, 1 , 1 , 1)

 $W = Y_{u}^{ij} \hat{U}_{i} \hat{Q}_{j} \hat{H}_{u} - Y_{d}^{ij} \hat{D}_{i} \hat{Q}_{j} \hat{H}_{d} - Y_{e}^{ij} \hat{E}_{i} \hat{L}_{j} \hat{H}_{d} + \mu \hat{H}_{u} \hat{H}_{d} + Y_{\nu}^{ij} \hat{L}_{i} \hat{H}_{u} \hat{\nu}_{j}$ $- \mu' \hat{\eta} \hat{\eta} + Y_{x}^{ij} \hat{\nu}_{i} \hat{\eta} \hat{\nu}_{j}$

based on B. O'Leary, W.P., F. Staub, arXiv:1112.4600

Julius-Maximilians-

UNIVERSITÄT

WURZBURG

 Z_{χ}

$$\gamma = \frac{1}{16\pi^2} \begin{pmatrix} \frac{33}{5} & 6\sqrt{\frac{2}{5}} \\ 6\sqrt{\frac{2}{5}} & 9 \end{pmatrix}$$

- **Solution** D-term only due to U(1) gauge kinetic mixing
- **P** neutrino masses via seesaw $I \Rightarrow Y_{\nu}$ much smaller
- effect on sfermion masses less pronounced
 except $\tilde{\nu}$: $Y_x^{ij} \hat{\nu}_i \hat{\eta} \hat{\nu}_j$ is $\Delta L = 2$ after symmetry breaking
 - \Rightarrow large splitting between scalar and pseudoscalar parts of $\tilde{\nu}_R$

$$\Rightarrow$$
 enlarges parameter space with $\tilde{\nu}$ LSP

reduces $\sum_{i,j} BR(Z' \to \tilde{\nu}_i \tilde{\nu}_j)$

larger mass splitting between sleptons and sneutrinos \Rightarrow harder leptons

all masses in GeV

WÜRZBURG

	BL1	BL2						
m_0	600	1000		BL1	BL2		BL1	BL2
$M_{1/2}$	600	1500	$m_{Z'}$	2000	2500	$m_{\tilde{\chi}_1^{\pm}}$	475.4	1242.0
A_0	0	-1500	$m_{ ilde{\chi}_1^0}$	280.7	678.0	$m_{\tilde{\chi}_{2}^{\pm}}$	733.9	1872.0
aneta	10	20	$m_{ ilde{\chi}_2^0}$	475.4	735.2	$m_{ ilde{ au}_1}$	603.7	1002.0
sign μ	+	+	$m_{ ilde{\chi}_3^0}$	719.1	1241.9	$m_{ ilde{ au}_2}$	759.9	1446.5
aneta'	1.07	1.15	$m_{ ilde{\chi}_4^0}$	733.9	1827.0	$m_{ ilde{\mu}_1}$	610.8	1094.2
sign μ'	+	+	$m_{ ilde{\chi}_{5}^{0}}$	798.2	1867.5	$m_{ ilde{\mu}_2}$	761.9	1477.4
Y_X^{11}	0.42	0.37	$m_{ ilde{\chi}_c^0}$	1488.7	1871.5	$m_{ ilde{e}_1}$	610.8	1094.5
Y_X^{22}	0.43	0.4	$m_{\tilde{\chi}^0_7}$	2530.6	3131.4	$m_{\tilde{e}_2}$	761.9	1477.5
Y_{X}^{33}	0.44	0.4				L	1	

M. Krauss, B. O'Leary, W.P., F. Staub, arXiv:1206.3513

Z' couplings:

 $Q_{B-L} \cdot g_{B-L} \to Q_{B-L} \cdot g_{B-L} + Q_Y \cdot \tilde{g}$

No.	$\tilde{g} \neq 0$	$\tilde{g} = 0$
BL1	1680 GeV	1840 GeV
BL2	1700 GeV	1910 GeV

M. Krauss, B. O'Leary, W.P., F. Staub, arXiv:1206.3513:

see also: J. Kang and P. Langacker, PRD **71** (2005) 035014; M. Baumgart, T. Hartman, C. Kilic, and L.-T. Wang, JHEP **0711** (2007) 084; C.-F. Chang, K. Cheung, and T.-C. Yuan, JHEP **1109** (2011) 058; G. Corcella and S. Gentile, arXiv:1205.5780

UNIVERSITÄT WÜRZBURG LHC 14 TeV: Sleptons via Z' in BL1, II

- Invariant mass of the muon pair: $M_{\mu\mu} > 200 \text{ GeV}$
- missing transverse momentum: $p_T(\not\!\!\!E) > 200 \text{ GeV}$
- transverse cluster mass

$$M_T = \sqrt{\left(\sqrt{p_T^2(\mu^+\mu^-) + M_{\mu\mu}^2} + p_T(E)\right)^2 - (\vec{p}_T(\mu^+\mu^-) + \vec{p}_T(E))^2}$$

$$M_T > 800 \text{ GeV}$$

for $t\bar{t}$ suppression and squark/gluino cascade decays:

 $p_{T,\text{hardest jet}} < 40 \text{ GeV}$

UNIVERSITÄT WÜRZBURG LHC 14 TeV: Sleptons via Z' in BL1, II

- Invariant mass of the muon pair: $M_{\mu\mu} > 200 \text{ GeV}$
- missing transverse momentum: $p_T(\not\!\!\!E) > 200 \text{ GeV}$
- transverse cluster mass

$$M_T = \sqrt{\left(\sqrt{p_T^2(\mu^+\mu^-) + M_{\mu\mu}^2} + p_T(E)\right)^2 - (\vec{p}_T(\mu^+\mu^-) + \vec{p}_T(E))^2}$$

$$M_T > 800 \text{ GeV}$$

for $t\bar{t}$ suppression and squark/gluino cascade decays:

 $p_{T,\text{hardest jet}} < 40 \text{ GeV}$

main dependence on masses \Rightarrow vary $m_{\tilde{l}}$ and $m_{Z'}$, $M_L = 1.2 M_E$

M. Krauss, B. O'Leary, W.P., F. Staub, arXiv:1206.3513

UNIVERSITÄT WÜRZBURG Conclusions

- ${f P}$ $m_{h^0}\simeq 125~{
 m GeV}\Rightarrow$ hint to go beyond (C)MSSM
- models with extra U(1): motivated by embedding in SO(10), E(6) etc. can nicely explain neutrino physics, partially testable @ LHC and ILC
- extra $Z' \Rightarrow$ additional D-terms for scalars, e.g. SM-like Higgs with tree-level mass of up to 110 GeV \Rightarrow less constraining for GMSB and CMSSM like scenarios
- If the second s
- regions with $\tilde{\nu}$ -LSP and/or additional gauginos \Rightarrow higher multiplicities, in particular leptons

UNIVERSITÄT WÜRZBURG Conclusions

- ${f P}$ $m_{h^0}\simeq 125~{
 m GeV}\Rightarrow$ hint to go beyond (C)MSSM
- models with extra U(1): motivated by embedding in SO(10), E(6) etc. can nicely explain neutrino physics, partially testable @ LHC and ILC
- extra $Z' \Rightarrow$ additional D-terms for scalars, e.g. SM-like Higgs with tree-level mass of up to 110 GeV \Rightarrow less constraining for GMSB and CMSSM like scenarios
- direct \tilde{l} production via Z'
- **P** regions with $\tilde{\nu}$ -LSP and/or additional gauginos
 - \Rightarrow higher multiplicities, in particular leptons
 - \Rightarrow expect less stringent exclusions depending on m_Z^\prime and extended Higgs sector

$$\begin{split} m_{Z'}^2 &\simeq \frac{1}{4} \left((g_{BLR} - g_R)^2 + (g_{BL} - g_{RBL})^2 \right) v_R^2 = \left(\frac{5}{4} g_\chi v_R \right)^2 \\ &\simeq -2 (|\mu_R|^2 + m_{\bar{\chi}_R}^2) + \frac{g_R^2}{4} v^2 \cos(2\beta) \frac{\tan\beta_R^2 + 1}{\tan\beta_R^2 - 1} + \Delta m_{\chi_R}^2 \frac{2\tan\beta_R^2}{\tan\beta_R^2 - 1} \\ \Delta m_{\chi_R}^2 &= m_{\bar{\chi}_R}^2 - m_{\chi_R}^2 \simeq \frac{1}{4\pi^2} \text{Tr}(Y_s Y_s^\dagger) (3m_0^2 + A_0^2) \log\left(\frac{M_{GUT}}{M_{SUSY}}\right) \\ v_R^2 &= v_{\chi_R}^2 + v_{\bar{\chi}_R}^2 \end{split}$$

 $\tan\beta_R$

Constraints from Z-width: $m_{\nu_h}\gtrsim m_Z$ invisible width

Heavy neutrinos

$$\left|1 - \sum_{ij=1, i \le j}^{3} \left|\sum_{k=1}^{3} U_{ik}^{\nu} U_{jk}^{\nu,*}\right|^{2}\right| < 0.009$$

dominant decays

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$egin{array}{rcl}
u_j&
ightarrow&W^{\pm}l^{\mp}
u_j&
ightarrow&Z
u_i
u_j&
ightarrow&h_k
u_i
\end{array}$$

roughly

$$BR(\nu_j \to W^{\pm} l^{\mp}) : BR(\nu_j \to Z\nu_i) : BR(\nu_j \to h_k \nu_i) \simeq 0.5 : 0.25 : 0.25$$

in BLRSP4

$$BR(\nu_k \to \tilde{\nu}_i \tilde{\chi}_1^0) \simeq 0.03$$
 , $(k = 4, 5, 6)$ and $(i = 1, 2, 3)$

basis (W^0, B_{B-L}, B_R)

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

$$M_{VV}^{2} = \frac{1}{4} \begin{pmatrix} g_{2}^{2}v^{2} & -g_{2}g_{RBL}v^{2} & g_{2}g_{R}v^{2} \\ -g_{2}g_{RBL}v^{2} & g_{RBL}^{2}v^{2} + \tilde{g}_{BL}^{2}v_{R}^{2} & g_{R}g_{RBL}v^{2} - \tilde{g}_{R}\tilde{g}_{BL}v_{R}^{2} \\ -g_{2}g_{R}v^{2} & g_{R}g_{RBL}v^{2} - \tilde{g}_{R}\tilde{g}_{BL}v_{R}^{2} & g_{R}^{2}v^{2} + \tilde{g}_{R}^{2}v_{R}^{2} \end{pmatrix}$$

$$\tilde{g}_{BL} = (g_{BL} - g_{RBL}), \quad \tilde{g}_{R} = (g_{R} - g_{BLR})$$

 $\det\left(M_{VV}^2\right) = 0$

expanding in v^2/v_R^2 and setting $g_{BLR} = g_{RBL} = 0$

Vector bosons

$$\begin{split} m_Z^2 &= \frac{(g_{BL}^2 g_2^2 + g_{BL}^2 g_R^2 + g_2^2 g_R^2)}{4(g_{BL}^2 + g_R^2)} v^2 + O\left(\frac{v^2}{v_R^2}\right) \\ m_{Z'}^2 &= \frac{1}{4} (g_{BL}^2 + g_R^2) v_R^2 + \frac{g_R^4}{4(g_{BL}^2 + g_R^2)} v^2 + O\left(\frac{v^2}{v_R^2}\right) \end{split}$$

M. Hirsch, W.P., L. Reichert, F. Staub, arXiv:1206:3516

basis $(\lambda_{BL},\lambda_L^0, \tilde{h}_d^0, \tilde{h}_u^0, \lambda_R, \tilde{\bar{\chi}}_R, \tilde{\chi}_R)$

 $M_{\tilde{\chi}^0} =$

M_{BL}	0	$-\frac{1}{2}g_{RBL}v_d$	$\frac{1}{2}g_{RBL}v_u$	$\frac{M_{BLR}}{2}$	$rac{1}{2}v_{ar{\chi}_R} ilde{g}_{BL}$	$-rac{1}{2}v_{\chi_R} ilde{g}_{BL}$
0	M_2	$\frac{1}{2}g_2v_d$	$-rac{1}{2}g_2v_u$	0	0	0
$-rac{1}{2}g_{RBL}v_d$	$rac{1}{2}g_2v_d$	0	$-\mu$	$-rac{1}{2}g_Rv_d$	0	0
$rac{1}{2}g_{RBL}v_u$	$-rac{1}{2}g_2v_u$	$-\mu$	0	$rac{1}{2}g_R v_u$	0	0
$rac{M_{BLR}}{2}$	0	$-rac{1}{2}g_Rv_d$	$rac{1}{2}g_R v_u$	M_R	$-rac{1}{2}v_{ar{\chi}_R} ilde{g}_R$	$rac{1}{2}v_{\chi_R} ilde{g}_R$
$rac{1}{2}v_{ar{\chi}_R} ilde{g}_{BL}$	0	0	0	$-rac{1}{2}v_{ar{\chi}_R} ilde{g}_R$	0	$-\mu_R$
$\left(\begin{array}{c} -\frac{1}{2}v_{\chi_R}\tilde{g}_{BL} \end{array} \right)$	0	0	0	$rac{1}{2}v_{\chi_R} ilde{g}_R$	$-\mu_R$	0 /

Z' limits and phenomenology

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

final state	BLRSP1	BLRSP2	BLRSP3	BLRSP4	BLRSP5
BR(dd)	0.31	0.35	0.35	0.37	0.43
BR(uu)	0.06	0.07	0.07	0.07	0.08
BR(ll)	0.12	0.14	0.14	0.14	0.16
$BR(u_l u_l)$	0.10	0.11	0.12	0.12	0.12
$BR(u_h u_h)$	0.27	0.30	0.13	0.11	0.13
$BR(ilde{ u} ilde{ u})$	0.05		0.05	0.03	—
$BR(\widetilde{l}\widetilde{l})$			0.05	0.03	—
$BR(\tilde{\chi}_2^+\tilde{\chi}_2^-) + BR(\tilde{\chi}_4^0\tilde{\chi}_5^0)$				0.04	—

Z' limits and phenomenology

final state	BLRSP1	BLRSP2	BLRSP3	BLRSP4	BLRSP5
BR(dd)	0.31	0.35	0.35	0.37	0.43
BR(uu)	0.06	0.07	0.07	0.07	0.08
BR(ll)	0.12	0.14	0.14	0.14	0.16
$BR(u_l u_l)$	0.10	0.11	0.12	0.12	0.12
$BR(u_h u_h)$	0.27	0.30	0.13	0.11	0.13
$BR(ilde{ u} ilde{ u})$	0.05	—	0.05	0.03	—
$BR(\widetilde{l}\widetilde{l})$		—	0.05	0.03	—
$BR(\tilde{\chi}_2^+\tilde{\chi}_2^-) + BR(\tilde{\chi}_4^0\tilde{\chi}_5^0)$		_	_	0.04	

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

27 August 2013