

HERA Symposium Hamburg, June 18, 2013 Ami Rostomyan (on behalf of the HERMES collaboration)

spin and hadronization

HERMES main research topics:

✓ origin of nucleon spin

➡ longitudinal spin/momentum structure

➡ transverse spin/momentum structure

✓ hadronization/fragmentation

spin and hadronization

HERMES main research topics:

✓ origin of nucleon spin

☞ longitudinal spin/momentum structure

➡ transverse spin/momentum structure

✓ hadronization/fragmentation

- ✓ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
- $rac{1}{2}$ momentum: quarks carry ~ 50 % of the proton momentum
- ➡ spin: total quark spin contribution only ~30%

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position \mathbf{b} and momentum \mathbf{k}

b

 \boldsymbol{s}_q

 $m{k}_\perp$

 $\int dp W(x,p) = |\psi(x)|^2$ **HERA Symposium, dx W(kup); = 2|\phi(p)|^2**

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**

Ami Rostomyan

 $m{k}_{\perp}$

 $\int dp W(x,p) = |\psi(x)|^2$

HERA Symposium, $dx dW(bup) = 2|\phi(p)|^2$

b

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**

 $oldsymbol{s}_q$

 k_{\perp}

b

 $\int dp W(x,p) = |\psi(x)|^2$ **HERA Symposium**, **dxdW(x,p)**, **-2**[$\phi(p)$]²

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**

spin and hadronization

HERMES main research topics:

✓ origin of nucleon spin

► longitudinal spin/momentum structure

➡ transverse spin/momentum structure

✓ hadronization/fragmentation

 \checkmark nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents

• momentum: quarks carry ~ 50 % of the proton momentum

➡ spin: total quark spin contribution only ~30%

study of TMD DFs and GPDs

spin and hadronization

HERMES main research topics:

✓ origin of nucleon spin

► longitudinal spin/momentum structure

➡ transverse spin/momentum structure

✓ hadronization/fragmentation

✓ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
 ➡ momentum: quarks carry ~ 50 % of the proton momentum
 ➡ spin: total quark spin contribution only ~30%
 ➡ study of TMD DFs and GPDs

 \checkmark isolated quarks have never been observed in nature

 \checkmark fragmentation functions were introduced to describe the hadronization

- non-pQCD objects
- universal but not well known functions
- → advantage of lepton-nucleon scattering data →
 flavour separation of fragmentation functions (FFs)

advantages of the experiment

The HERMES experiment, located at HERA, with its pure gas targets and advanced particle identification (π , K, p) is well suited for TMD and GPD measurements.

unpolarized H, D targets with recoil detector

semi-inclusive measurements (probing TMDs)

Ami Rostomyan

HERA Symposium, Hamburg, 2013

HERA Symposium, Hamburg, 2013

LO interpretation of multiplicity results (integrated over $\mathbf{P}_{h\perp}$):

$$M^{h} \propto \frac{\sum_{q} e_{q}^{2} \int dx f_{1q}(x, Q^{2}) D_{1q}^{h}(z, Q^{2})}{\sum_{q} e_{q}^{2} \int dx f_{1q}(x, Q^{2})}$$

 \checkmark charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

$$f_1 = \bigcirc$$

 $M^{h} = \frac{d\sigma^{h}_{SIDIS}(x, Q^{2}, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^{2})}$

 $\sigma_{UU} \propto f_1 \otimes D_1$

LO interpretation of multiplicity results (integrated over $\mathbf{P}_{h\perp}$):

$$M^{h} \propto \frac{\sum_{q} e_{q}^{2} \int dx f_{1q}(x, Q^{2}) D_{1q}^{h}(z, Q^{2})}{\sum_{q} e_{q}^{2} \int dx f_{1q}(x, Q^{2})}$$

 \checkmark charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

π^+ and K⁺:

favoured fragmentation on proton

π]:

➡ increased number of d-quarks in D target and favoured fragmentation on neutron

K⁻:

reproduced through favoured fragmentation from the nucleon valence quarks

 $M^{h} = \frac{d\sigma^{h}_{SIDIS}(x, Q^{2}, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^{2})}$

- Phys.Rev. D87 (2013) 074029

$\sigma_{UU} \propto f_1 \otimes D_1$

✓ calculations using DSS, HNKS and Kretzer FF fits together with CTEQ6L PDFs proton:

- ➡ fair agreement for positive hadrons
- disagreement for negative hadrons

deuteron:

results are in general in better agreement with the various predictions

Ami Rostomyan

HERA Symposium, Hamburg, 2013

- Phys.Rev. D87 (2013) 074029

$\sigma_{UU} \propto f_1 \otimes D_1$

evaluation of strange quark PDFs

 \checkmark in the absence of experimental constraints, many global QCD fits of PDFs assume

$$s(x) = \bar{s}(x) = r[\bar{u}(x) + \bar{d}(x)]/2$$

✓ isoscalar extraction of $S(x)\mathcal{D}_{S}^{\mathcal{K}}$ based on the multiplicity data of K⁺ and K⁻ on D

$$S(x) \int \mathcal{D}_{S}^{K}(z) dz \simeq Q(x) \left[5 \frac{\mathrm{d}^{2} N^{K}(x)}{\mathrm{d}^{2} N^{DIS}(x)} - \int \mathcal{D}_{Q}^{K}(z) dz \right]$$

$$S(x) = s(x) + \bar{s}(x)$$

$$Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x)$$

$$\mathcal{D}_{S}^{\mathcal{K}} = D_{1}^{s \to K^{+}} + D_{1}^{\bar{s} \to K^{+}} + D_{1}^{s \to K^{-}} + D_{1}^{\bar{s} \to K^{-}}$$

$$\mathcal{D}_{Q}^{\mathcal{K}} = D_{1}^{u \to K^{+}} + D_{1}^{\bar{u} \to K^{+}} + D_{1}^{d \to K^{+}} + D_{1}^{\bar{d} \to K^{+}} + \dots$$

evaluation of strange quark PDFs

 \checkmark in the absence of experimental constraints, many global QCD fits of PDFs assume

$$s(x) = \bar{s}(x) = r[\bar{u}(x) + \bar{d}(x)]/2$$

✓ isoscalar extraction of $S(x)\mathcal{D}_{S}^{\mathcal{K}}$ based on the multiplicity data of K⁺ and K⁻ on D

$$S(x) \int \mathcal{D}_S^K(z) dz \simeq Q(x) \left[5 \frac{\mathrm{d}^2 N^K(x)}{\mathrm{d}^2 N^{DIS}(x)} - \int \mathcal{D}_Q^K(z) dz \right]$$

$$S(x) = s(x) + \bar{s}(x)$$

$$Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x)$$

$$\mathcal{D}_{S}^{\mathcal{K}} = D_{1}^{s \to K^{+}} + D_{1}^{\bar{s} \to K^{+}} + D_{1}^{s \to K^{-}} + D_{1}^{\bar{s} \to K^{-}}$$

$$\mathcal{D}_{Q}^{\mathcal{K}} = D_{1}^{u \to K^{+}} + D_{1}^{\bar{u} \to K^{+}} + D_{1}^{d \to K^{+}} + D_{1}^{\bar{d} \to K^{+}} + \dots$$

- ✓ the distribution of S(x) is obtained for a certain value of $\mathcal{D}_{S}^{\mathcal{K}}$
- ✓ the normalization of the data is given by that value
- ✓ whatever the normalization, the shape is incompatible with the predictions

HERA Symposium, Hamburg, 2013

Ami Rostomyan

11

- Phys.Rev. D87 (2013) 074029

✓ multi-dimensional analysis allows exploration of hew kinematic dependences K broader P_{h⊥} distribution for K $^{0.2}$

0.3 < z < 0.4 Ami Rostomyan

1.5 1

12

0.3 < z < 0.4 *HERA Symposium, Hamburg, 2013* 0.2

quark's transverse degrees of freedom

$\sigma_{UU} \propto h_1^\perp \otimes H_1^\perp$

quark's transverse degrees of freedom

R and K+: striking differences w.r.t. pions

role of the sea in DF and FF

1

A Rostomvan

HERA Symposium, Hamburg, 2013

В 0.2

beyond the leading twist

$$\frac{d^6\sigma}{dx\,dy\,dz\,dP_{h\perp}^2d\phi\,d\phi_s} \propto \left\{F_{UU} + \ldots + \lambda_e \left\{\sqrt{2\epsilon(1-\epsilon)}F_{LU}^{\sin\phi}\sin\phi\right\} + \ldots\right\}$$

convolutions of twist-2 and twist-3 functions

beyond the leading twist

$$\frac{d^6\sigma}{dx\,dy\,dz\,dP_{h\perp}^2d\phi\,d\phi_s} \propto \left\{F_{UU} + \ldots + \lambda_e \left\{\sqrt{2\epsilon(1-\epsilon)}F_{LU}^{\sin\phi}\sin\phi\right\} + \ldots\right\}$$

convolutions of twist-2 and twist-3 functions

beyond the leading twist

$$\frac{d^6\sigma}{dx\,dy\,dz\,dP_{h\perp}^2d\phi\,d\phi_s} \propto \left\{F_{UU} + \ldots + \lambda_e \left\{\sqrt{2\epsilon(1-\epsilon)}F_{LU}^{\sin\phi}\sin\phi\right\} + \ldots\right\}$$

convolutions of twist-2 and twist-3 functions

the role of the twist-3 DF or FF is sizeable

halftime report

halftime report

exclusive measurements (probing GPDs)

theoretically the cleanest probe of GPDs $\gamma^* N \to \gamma N : H, E, \widetilde{H}, \widetilde{E}$

theoretically the cleanest probe of GPDs $\gamma^* N \to \gamma N : H, E, \widetilde{H}, \widetilde{E}$

✓ HERMES measured complete set of beam helicity, beam charge and target polarization asymmetries

✓ HERMES measured complete set of beam helicity, beam charge and target polarization asymmetries

DVCS measurements with the recoil detector

(recoil data)

 ✓ unresolved and unresolvedreference samples: ep → e'γX
 ☞ use missing mass technique
 ☞ for comparison only

✓ pure sample: $ep \to e' \gamma p'$

 \blacksquare all particles in the final state are detected

- kinematic event fit
- ► BH/DVCS events with 83% efficiency
- background contamination from semi-inclusive and associated processes less than 0.2%

GPD H: unpolarized hydrogen target

$$\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times \left[1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} \mathcal{P}_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi)\right]$$
$$\mathcal{A}_{LU}(\phi) \simeq \sum_{n=1}^{2} \mathcal{A}_{LU}^{\sin(n\phi)} \sin(n\phi)$$

restruction of single-charge beam-helicity asymmetry amplitudes for elastic (pure) data sample

➡ indication for slightly larger magnitude of the leading amplitude for elastic process compared to the one in the recoil detector acceptance (unresolved-reference)

associated DVCS

(recoil data)

- consistent with zero result for both channels
- ➡ associated DVCS is mainly dilution in the analysis using the missing mass technique
- in agreement with the DVCS results on pure sample

Ami Rostomyan

HERA Symposium, Hamburg, 2013

given channel probes specific GPD flavour

exclusive vector-meson production

For factorization in collinear approximation for $\sigma_L($ and $\rho_L, \omega_L, \phi_L)$ only

 $\mathcal{A} \propto F(x,\xi,t;\mu^2) \otimes K(x,\xi,z;\log(Q^2/\mu^2) \otimes \Phi(z;\mu^2)$

exclusive vector-meson production

Factorization in collinear approximation for $\sigma_L($ and $\rho_L, \omega_L, \phi_L)$ only

 $\mathcal{A} \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2) \otimes \Phi(z; \mu^2)$ -Goloskokov, Kroll (2006)**r** power corrections: k_{\perp} is not neglected $\mathcal{A} \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2) \otimes \Phi(z, k_{\perp}; \mu^2)$

exclusive vector-meson production

For factorization in collinear approximation for $\sigma_L($ and $\rho_L, \omega_L, \phi_L)$ only

 $\mathcal{A} \propto F(x,\xi,t;\mu^2) \otimes K(x,\xi,z;\log(Q^2/\mu^2)) \otimes \Phi(z;\mu^2)$

-Goloskokov, Kroll (2006)-

r power corrections: k_{\perp} is not neglected

 $\mathcal{A} \propto F(x,\xi,t;\mu^2) \otimes K(x,\xi,z;\log(Q^2/\mu^2) \otimes \Phi(z,k_{\perp};\mu^2)$

$$\frac{d\sigma}{dx_B \, dQ^2 \, dt \, d\phi_s \, d\phi \, d\cos \vartheta \, d\varphi} \sim \frac{d\sigma}{dx_B \, dQ^2 \, dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)$$

roduction and decay angular distributions W decomposed:

 $W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}$

- reparametrized by helicity amplitudes or alternatively by SDMEs:
 - the helicity transfer from virtual photon to the vector meson (s-channel helicity conservation)
 - ➡ the parity of the diffractive exchange process
 - \blacktriangleright natural parity is related to H and E
 - **w** unnatural parity is related to \widetilde{H} and \widetilde{E}

observation of unnatural-parity exchange contribution

- regive information about \widetilde{H}
- \blacksquare at large W and Q², this transition should be suppressed by a factor of M_V/Q
- ➡ the combinations of SDMEs expected to be zero in case of natural parity exchange dominance

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1} \qquad u_{2} = r_{11}^{5} + r_{1-1}^{5} \qquad u_{3} = r_{11}^{8} + r_{1-1}^{8}$$

$$= \int_{0.5}^{2} \int_{0.5}^{0} \frac{1}{10} \int_{0.5}^{0} \frac{1}{10}$$

observation of unnatural-parity exchange contribution

- \blacksquare give information about \widetilde{H}
- \blacksquare at large W and Q², this transition should be suppressed by a factor of M_V/Q
- ➡ the combinations of SDMEs expected to be zero in case of natural parity exchange dominance

$$u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1 \qquad u_2 = r_{11}^5 + r_{1-1}^5 \qquad u_3 = r_{11}^8 + r_{1-1}^8$$

halftime report

HERA Symposium, Hamburg, 2013

HERMES has been the pioneering collaboration in TMD and GPD fields

still very important player in the field of nucleon (spin) structure

- ▶ polarized e^{+/-} beams
- repure gas target

good particle identification

recoil detector